scholarly journals Genomic signatures of rapid adaptive divergence in a tropical montane species

2021 ◽  
Vol 17 (7) ◽  
pp. 20210089
Author(s):  
Per G. P. Ericson ◽  
Martin Irestedt ◽  
Huishang She ◽  
Yanhua Qu

Mountain regions contain extraordinary biodiversity. The environmental heterogeneity and glacial cycles often accelerate speciation and adaptation of montane species, but how these processes influence the genomic differentiation of these species is largely unknown. Using a novel chromosome-level genome and population genomic comparisons, we study allopatric divergence and selection in an iconic bird living in a tropical mountain region in New Guinea, Archbold's bowerbird ( Amblyornis papuensis ). Our results show that the two populations inhabiting the eastern and western Central Range became isolated ca 11 800 years ago, probably because the suitable habitats for this cold-tolerating bird decreased when the climate got warmer. Our genomic scans detect that genes in highly divergent genomic regions are over-represented in developmental processes, which is probably associated with the observed differences in body size between the populations. Overall, our results suggest that environmental differences between the eastern and western Central Range probably drive adaptive divergence between them.


2021 ◽  
Author(s):  
◽  
Tom Oosting

<p><b>Advances in genomic methods now enable the study of wild populations and their evolutionary history at an unprecedented level. The genotyping of many thousands of genetic markers across the genome provides high statistical resolution. This enables the identification of adaptive genetic variation, providing novel insights into population demography and the processes driving population divergence. Marine fish are ideal candidates to study the processes driving evolutionary divergence because selection works efficiently in large populations, and marine populations can be distributed over large spatial ranges and occupy a range of environmental conditions. This thesis used whole-genome variant data to study the Australasian snapper (Chrysophrys auratus, tāmure) in New Zealand. Snapper is one of New Zealand’s largest inshore fisheries and has experienced significant population reductions. The aims of this thesis were to investigate the genome-wide variation in snapper in New Zealand and 1) assess the neutral and adaptive population genetic structure, 2) reconstruct the demographic history, and 3) identify genomic regions, genes and their functions that show signs of selection.</b></p> <p>Population genomic structure was assessed using whole-genome resequencing data from 350 individuals, and this data set resulted in 167,543 assumed neutrally evolving loci (SNPs). It was found that levels of genetic diversity were not significantly different between populations, suggesting that fishing pressure has not lead to local reductions in genetic variation. Levels of genetic differentiation between sampled populations was low, with significant evidence for isolation by distance (R2 = 0.75, p = 0.002). Pairwise FST estimates and PCA/DAPC showed the presence of two genetic clusters, one containing the northern and one containing the southern populations. Genetic disjunctions combined with mixing between the clusters was detected around the Mahia peninsula and Cape Reinga. The identification of adaptive loci enabled the identification of fine-scale population structure, reflecting currently recognized stocks. The ability to differentiate between stocks is fundamental for fisheries management. The patterns detected here show promising results for future implementation into fisheries management of snapper stocks.</p> <p>Contemporary and ancient mitochondrial genomes were used to assess the demographic, and phylogeographic history of snapper. Analyses indicated that haplotype diversity was high (0.968-0.982), which is commonly observed in species with large populations sizes. Mitochondrial genomes showed the presence of two lineages that diverged approximately 650,000 (490,000 – 840,000) years ago. The separation was likely linked to reductions in sea level during glacial cycles. Estimates of changes in population size show strong support for an exponential population size increase after the last glacial maximum (LGM). Changes in population abundance based on the Bayesian Skyline plot indicated a strong population increase approximately 10,000 years ago. The steep increase in new branches in the phylogenetic tree suggests population sizes increase approximately 20,000 (7,000-35,000) years ago. A post-glacial expansion is the most likely explanation for the observed increase in population abundance. During this period, sea levels rose which presumably reconnected fragmented populations, and subsequent increased sea temperatures allowed for southward expansion.</p> <p>Whole-genome sequences from contemporary snapper populations were used to identify genes under selection. Analyses were conducted to detect selection in a single genetic cluster (divergent selection), or both genetic clusters (nation-wide selection). In total, 101 genomic regions containing 253 different genes showed evidence for selection. Two genomic regions showed strong evidence for divergent selection between the northern and southern cluster (FST > 0.2). The regions contained two genes associated with glycolysis which are linked to (cell-) growth (i.e. mast2 and hk2). The regions containing hk2 showed a lack of rare alleles (TD > 2) in the southern cluster, consistent with balancing selection maintaining multiple alleles in the population. Variation in growth rate may be maintained throughout the genetic cluster because of a latitudinal gradient in sea temperature. Strong evidence for selective sweeps were detected in two genomic regions on a nation-wide level. Both regions contained genes associated with angiogenesis (mydgf and rnf213a), which has been shown to affect maturation in species of fish. While tentative, it is possible that intense size-selective fishing is selecting for early maturation in snapper, a life life-history commonly associated with fishing-induced evolution. A selection scan contrasting the population Tasman Bay and Karamea Bight was performed to test for evidence of adaption to cold stress. Selection was detected in 123 genomic regions containing 296 genes, of which 197 potentially experience divergent selection. Two genes were located in regions that showed significant evidence of selection (camk2g and ksr2). Both genes have been associated with cold stress in previous studies, suggesting the Karamea Bight could represent an adaptive front at the southern range of the distribution of snapper.</p> <p>This thesis presents the first population genomic study of Australasian snapper in New Zealand, a species with a diverse genetic landscape and a rich evolutionary history. The detection of fine-scale population structure through adaptive differences between populations highlights the promising application of genomics in fisheries management. The study of mitochondrial lineages showed the effect of glacial cycles, providing insights into how New Zealand’s marine fauna has been affected by major changes in global climate. Finally, the identification of genes and associated biological traits under selection has provided fundamental new insights regarding the environmental conditions that drive adaptive change and act on phenotypes. Snapper is an ideal species for developing and integrating genomics into New Zealand fisheries management. A detailed understanding of fish stock demography and adaptive potential is critical to support improvement to fisheries management as wild stocks continue to face strong anthropogenic pressures (e.g. climate change and overexploitation). Genomics provides valuable insights into how stock assessments and harvesting levels can be better set to match the natural biological units of a species that are determined by gene flow and adaptive variation.</p>



2021 ◽  
Author(s):  
◽  
Tom Oosting

<p><b>Advances in genomic methods now enable the study of wild populations and their evolutionary history at an unprecedented level. The genotyping of many thousands of genetic markers across the genome provides high statistical resolution. This enables the identification of adaptive genetic variation, providing novel insights into population demography and the processes driving population divergence. Marine fish are ideal candidates to study the processes driving evolutionary divergence because selection works efficiently in large populations, and marine populations can be distributed over large spatial ranges and occupy a range of environmental conditions. This thesis used whole-genome variant data to study the Australasian snapper (Chrysophrys auratus, tāmure) in New Zealand. Snapper is one of New Zealand’s largest inshore fisheries and has experienced significant population reductions. The aims of this thesis were to investigate the genome-wide variation in snapper in New Zealand and 1) assess the neutral and adaptive population genetic structure, 2) reconstruct the demographic history, and 3) identify genomic regions, genes and their functions that show signs of selection.</b></p> <p>Population genomic structure was assessed using whole-genome resequencing data from 350 individuals, and this data set resulted in 167,543 assumed neutrally evolving loci (SNPs). It was found that levels of genetic diversity were not significantly different between populations, suggesting that fishing pressure has not lead to local reductions in genetic variation. Levels of genetic differentiation between sampled populations was low, with significant evidence for isolation by distance (R2 = 0.75, p = 0.002). Pairwise FST estimates and PCA/DAPC showed the presence of two genetic clusters, one containing the northern and one containing the southern populations. Genetic disjunctions combined with mixing between the clusters was detected around the Mahia peninsula and Cape Reinga. The identification of adaptive loci enabled the identification of fine-scale population structure, reflecting currently recognized stocks. The ability to differentiate between stocks is fundamental for fisheries management. The patterns detected here show promising results for future implementation into fisheries management of snapper stocks.</p> <p>Contemporary and ancient mitochondrial genomes were used to assess the demographic, and phylogeographic history of snapper. Analyses indicated that haplotype diversity was high (0.968-0.982), which is commonly observed in species with large populations sizes. Mitochondrial genomes showed the presence of two lineages that diverged approximately 650,000 (490,000 – 840,000) years ago. The separation was likely linked to reductions in sea level during glacial cycles. Estimates of changes in population size show strong support for an exponential population size increase after the last glacial maximum (LGM). Changes in population abundance based on the Bayesian Skyline plot indicated a strong population increase approximately 10,000 years ago. The steep increase in new branches in the phylogenetic tree suggests population sizes increase approximately 20,000 (7,000-35,000) years ago. A post-glacial expansion is the most likely explanation for the observed increase in population abundance. During this period, sea levels rose which presumably reconnected fragmented populations, and subsequent increased sea temperatures allowed for southward expansion.</p> <p>Whole-genome sequences from contemporary snapper populations were used to identify genes under selection. Analyses were conducted to detect selection in a single genetic cluster (divergent selection), or both genetic clusters (nation-wide selection). In total, 101 genomic regions containing 253 different genes showed evidence for selection. Two genomic regions showed strong evidence for divergent selection between the northern and southern cluster (FST > 0.2). The regions contained two genes associated with glycolysis which are linked to (cell-) growth (i.e. mast2 and hk2). The regions containing hk2 showed a lack of rare alleles (TD > 2) in the southern cluster, consistent with balancing selection maintaining multiple alleles in the population. Variation in growth rate may be maintained throughout the genetic cluster because of a latitudinal gradient in sea temperature. Strong evidence for selective sweeps were detected in two genomic regions on a nation-wide level. Both regions contained genes associated with angiogenesis (mydgf and rnf213a), which has been shown to affect maturation in species of fish. While tentative, it is possible that intense size-selective fishing is selecting for early maturation in snapper, a life life-history commonly associated with fishing-induced evolution. A selection scan contrasting the population Tasman Bay and Karamea Bight was performed to test for evidence of adaption to cold stress. Selection was detected in 123 genomic regions containing 296 genes, of which 197 potentially experience divergent selection. Two genes were located in regions that showed significant evidence of selection (camk2g and ksr2). Both genes have been associated with cold stress in previous studies, suggesting the Karamea Bight could represent an adaptive front at the southern range of the distribution of snapper.</p> <p>This thesis presents the first population genomic study of Australasian snapper in New Zealand, a species with a diverse genetic landscape and a rich evolutionary history. The detection of fine-scale population structure through adaptive differences between populations highlights the promising application of genomics in fisheries management. The study of mitochondrial lineages showed the effect of glacial cycles, providing insights into how New Zealand’s marine fauna has been affected by major changes in global climate. Finally, the identification of genes and associated biological traits under selection has provided fundamental new insights regarding the environmental conditions that drive adaptive change and act on phenotypes. Snapper is an ideal species for developing and integrating genomics into New Zealand fisheries management. A detailed understanding of fish stock demography and adaptive potential is critical to support improvement to fisheries management as wild stocks continue to face strong anthropogenic pressures (e.g. climate change and overexploitation). Genomics provides valuable insights into how stock assessments and harvesting levels can be better set to match the natural biological units of a species that are determined by gene flow and adaptive variation.</p>



2017 ◽  
Vol 284 (1852) ◽  
pp. 20170226 ◽  
Author(s):  
Katharine A. Owers ◽  
Per Sjödin ◽  
Carina M. Schlebusch ◽  
Pontus Skoglund ◽  
Himla Soodyall ◽  
...  

Genetic analyses can provide information about human evolutionary history that cannot always be gleaned from other sources. We evaluated evidence of selective pressure due to introduced infectious diseases in the genomes of two indigenous southern African San groups—the ‡Khomani who had abundant contact with other people migrating into the region and the more isolated Ju|’hoansi. We used a dual approach to test for increased selection on immune genes compared with the rest of the genome in these groups. First, we calculated summary values of statistics that measure genomic signatures of adaptation to contrast selection signatures in immune genes and all genes. Second, we located regions of the genome with extreme values of three selection statistics and examined these regions for enrichment of immune genes. We found stronger and more abundant signals of selection in immune genes in the ‡Khomani than in the Ju|’hoansi. We confirm this finding within each population to avoid effects of different demographic histories of the two populations. We identified eight immune genes that have potentially been targets of strong selection in the ‡Khomani, whereas in the Ju|’hoansi, no immune genes were found in the genomic regions with the strongest signals of selection. We suggest that the more abundant signatures of selection at immune genes in the ‡Khomani could be explained by their more frequent contact with immigrant groups, which likely led to increased exposure and adaptation to introduced infectious diseases.



2012 ◽  
Vol 367 (1587) ◽  
pp. 364-373 ◽  
Author(s):  
Jared L. Strasburg ◽  
Natasha A. Sherman ◽  
Kevin M. Wright ◽  
Leonie C. Moyle ◽  
John H. Willis ◽  
...  

Genome scans have become a common approach to identify genomic signatures of natural selection and reproductive isolation, as well as the genomic bases of ecologically relevant phenotypes, based on patterns of polymorphism and differentiation among populations or species. Here, we review the results of studies taking genome scan approaches in plants, consider the patterns of genomic differentiation documented and their possible causes, discuss the results in light of recent models of genomic differentiation during divergent adaptation and speciation, and consider assumptions and caveats in their interpretation. We find that genomic regions of high divergence generally appear quite small in comparisons of both closely and more distantly related populations, and for the most part, these differentiated regions are spread throughout the genome rather than strongly clustered. Thus, the genome scan approach appears well-suited for identifying genomic regions or even candidate genes that underlie adaptive divergence and/or reproductive barriers. We consider other methodologies that may be used in conjunction with genome scan approaches, and suggest further developments that would be valuable. These include broader use of sequence-based markers of known genomic location, greater attention to sampling strategies to make use of parallel environmental or phenotypic transitions, more integration with approaches such as quantitative trait loci mapping and measures of gene flow across the genome, and additional theoretical and simulation work on processes related to divergent adaptation and speciation.



2013 ◽  
Author(s):  
Nicola Nadeau ◽  
Mayte Ruiz ◽  
Patricio Salazar ◽  
Brian Counterman ◽  
Jose Alejandro Medina ◽  
...  

Hybrid zones can be valuable tools for studying evolution and identifying genomic regions responsible for adaptive divergence and underlying phenotypic variation. Hybrid zones between subspecies of Heliconius butterflies can be very narrow and are maintained by strong selection acting on colour pattern. The co-mimetic species H. erato and H. melpomene have parallel hybrid zones where both species undergo a change from one colour pattern form to another. We use restriction associated DNA sequencing to obtain several thousand genome wide sequence markers and use these to analyse patterns of population divergence across two pairs of parallel hybrid zones in Peru and Ecuador. We compare two approaches for analysis of this type of data; alignment to a reference genome and de novo assembly, and find that alignment gives the best results for species both closely (H. melpomene) and distantly (H. erato, ~15% divergent) related to the reference sequence. Our results confirm that the colour pattern controlling loci account for the majority of divergent regions across the genome, but we also detect other divergent regions apparently unlinked to colour pattern differences. We also use association mapping to identify previously unmapped colour pattern loci, in particular the Ro locus. Finally, we identify within our sample a new cryptic population of H. timareta in Ecuador, which occurs at relatively low altitude and is mimetic with H. melpomene malleti.



PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0231804
Author(s):  
Radovan Smolinský ◽  
Vojtech Baláž ◽  
Beate Nürnberger

The role of adaptive divergence in the formation of new species has been the subject of much recent debate. The most direct evidence comes from traits that can be shown to have diverged under natural selection and that now contribute to reproductive isolation. Here, we investigate differential adaptation of two fire-bellied toads (Anura, Bombinatoridae) to two types of aquatic habitat. Bombina bombina and B. variegata are two anciently diverged taxa that now reproduce in predator-rich ponds and ephemeral aquatic sites, respectively. Nevertheless, they hybridise extensively wherever their distribution ranges adjoin. We show in laboratory experiments that, as expected, B. variegata tadpoles are at relatively greater risk of predation from dragonfly larvae, even when they display a predator-induced phenotype. These tadpoles spent relatively more time swimming and so prompted more attacks from the visually hunting predators. We argue in the discussion that genomic regions linked to high activity in B. variegata should be barred from introgression into the B. bombina gene pool and thus contribute to gene flow barriers that keep the two taxa from merging into one.



2012 ◽  
Vol 367 (1587) ◽  
pp. 354-363 ◽  
Author(s):  
S. Renaut ◽  
N. Maillet ◽  
E. Normandeau ◽  
C. Sauvage ◽  
N. Derome ◽  
...  

The nature, size and distribution of the genomic regions underlying divergence and promoting reproductive isolation remain largely unknown. Here, we summarize ongoing efforts using young (12 000 yr BP) species pairs of lake whitefish ( Coregonus clupeaformis ) to expand our understanding of the initial genomic patterns of divergence observed during speciation. Our results confirmed the predictions that: (i) on average, phenotypic quantitative trait loci (pQTL) show higher F ST values and are more likely to be outliers (and therefore candidates for being targets of divergent selection) than non-pQTL markers; (ii) large islands of divergence rather than small independent regions under selection characterize the early stages of adaptive divergence of lake whitefish; and (iii) there is a general trend towards an increase in terms of numbers and size of genomic regions of divergence from the least (East L.) to the most differentiated species pair (Cliff L.). This is consistent with previous estimates of reproductive isolation between these species pairs being driven by the same selective forces responsible for environment specialization. Altogether, dwarf and normal whitefish species pairs represent a continuum of both morphological and genomic differentiation contributing to ecological speciation. Admittedly, much progress is still required to more finely map and circumscribe genomic islands of speciation. This will be achieved through the use of next generation sequencing data but also through a better quantification of phenotypic traits moulded by selection as organisms adapt to new environmental conditions.



2016 ◽  
Author(s):  
James Starrett ◽  
Shahan Derkarabetian ◽  
Marshal Hedin ◽  
Robert W. Bryson ◽  
John E. McCormack ◽  
...  

AbstractArachnida is an ancient, diverse, and ecologically important animal group that contains a number of species of interest for medical, agricultural, and engineering applications. Despite this applied importance, many aspects of the arachnid tree of life remain unresolved, hindering comparative approaches to arachnid biology. Biologists have made considerable efforts to resolve the arachnid phylogeny; yet, limited and challenging morphological characters, as well as a dearth of genetic resources, have confounded these attempts. Here, we present a genomic toolkit for arachnids featuring hundreds of conserved DNA regions (ultraconserved elements or UCEs) that allow targeted sequencing of any species in the arachnid tree of life. We used recently developed capture probes designed from conserved genomic regions of available arachnid genomes to enrich a sample of loci from 32 diverse arachnids. Sequence capture returned an average of 487 UCE loci for all species, with a range from 170 to 722. Phylogenetic analysis of these UCEs produced a highly resolved arachnid tree with relationships largely consistent with recent transcriptome-based phylogenies. We also tested the phylogenetic informativeness of UCE probes within the spider, scorpion, and harvestman orders, demonstrating the utility of these markers at shallower taxonomic scales, even down to the level of species differences. This probe set will open the door to phylogenomic and population genomic studies across the arachnid tree of life, enabling systematics, species delimitation, species discovery, and conservation of these diverse arthropods.



Sign in / Sign up

Export Citation Format

Share Document