Charles Gorrie Wynne. 18 May 1911 – 1 October 1999

2001 ◽  
Vol 47 ◽  
pp. 497-514
Author(s):  
Jonathan Maxwell ◽  
Prudence M.J.H. Wormell

Charles Gorrie Wynne dedicated his professional life to optical design and became a principal figure in the international optical design community. When he died, he was optical consultant to the Institute of Astronomy in Cambridge and Emeritus Professor of Optical Design at Imperial College. Although nearly 90 years old he worked several days a week in the Institute of Astronomy until a few months before he died. He was elected to Fellowship of The Royal Society in 1970. Wynne's expertise was in the field of optical instrument design, particularly lens design. Among lens designers he is best known for his effective theories of lens design, his elegant and ambitious lens designs, and particularly his invention of a very successful method of computer-assisted lens design, based on the method of least squares. Among astronomers he is known for what is almost a monopoly of designs for field–widening optics for large telescopes, and also for a series of scientifically elegant spectrographs and atmospheric dispersion correctors. With microcircuit manufacturers he is famous for his work on the Wynne–Dyson catadioptric relay printer for microcircuit production. By high–energy physicists he is known as the designer of bubble–chamber optics; finally, he is known by his assistants and his students as their professional mentor. During the formative period of Charles Wynne's working life, optical design was performed almost exclusively behind the closed doors of optical factories. The optical designers in those factories traditionally led a monastic working life, closeted with a few close colleagues and assistants, grappling with the extensive numerical calculations that optical design involves. During the period of his career when he worked in this way, he managed to combine this type of working life with creative original research into new types of lens system and new methods of lens design.

1984 ◽  
Vol 78 ◽  
pp. 549-562 ◽  
Author(s):  
J.R.P. Angel

AbstractThe full potential of the next generation of larger telescopes will be realized only if they have well instrumented large fields of view. Scientific problems for which very large ground-based optical telescopes will be of most value often will need surveys to very deep limits with imaging and slitless spectroscopy, followed by spectroscopy of faint objects taken many at once over the field. Improved instruments and detectors for this purpose are being developed. Remotely positioned fibers allow the coupling of light from many objects in the field to the spectrograph slit. CCD arrays, operated in the TDI or drift scan mode, will make large area detectors of high efficiency that may supercede photographic plates. An ideal telescope optical design should be based on a fast parabolic primary, have a field of at least 1° with achromatic images < 0.25 arcseconds and have provision for dispersive elements to be used for slitless spectroscopy and compensation of atmospheric dispersion over the full field. A good solution for a general purpose telescope that can satisfy these needs is given by a three element refractive corrector at a fast Cassegrain focus. A specialized telescope dedicated to sky surveys, with better image quality and higher throughput than presently available, might be built as a scaled up Schmidt with very large photographic plates. Better performance in most areas should be obtained with a large CCD mosaic detector operated in the drift scan mode at a telescope with a 2-mirror reflecting corrector.


1969 ◽  
Vol 99 (9) ◽  
pp. 149-151
Author(s):  
V.A. Akulichev ◽  
L.R. Gavrilov ◽  
V.G. Grebinnik ◽  
V.A. Zhukov ◽  
G. Libman ◽  
...  

1971 ◽  
Author(s):  
a. Benvenutti ◽  
U. Camerini ◽  
W. F. Fry ◽  
R. March ◽  
D. D. Reeder ◽  
...  

2022 ◽  
Vol 134 (1031) ◽  
pp. 015004
Author(s):  
Yuji Ikeda ◽  
Sohei Kondo ◽  
Shogo Otsubo ◽  
Satoshi Hamano ◽  
Chikako Yasui ◽  
...  

Abstract WINERED is a novel near-infrared (NIR) high-resolution spectrograph (HRS) that pursues the highest possible sensitivity to realize high-precision spectroscopy in the NIR as in the optical wavelength range. WINERED covers 0.9–1.35 μm (z, Y, and J-bands) with three modes (Wide mode and two Hires modes) at the maximum spectral resolutions of R = 28,000 and R = 70,000. For fulfilling the objective, WINERED is designed with an unprecedentedly high instrument throughput (up to 50% at maximum including the quantum efficiency of the array) that is three times or more than other existing optical/NIR HRSs. This is mainly realized by a combination of non-white pupil and no fiber-fed configuration in optical design, the moderate (optimized) wavelength coverage, and the high-throughput gratings. Another prominent feature of WINERED is “warm” instrument despite for infrared (IR) observations. Such non-cryogenic (no cold stop) IR instrument finally became possible with the combination of custom-made thermal-cut filter of 10−8 class, 1.7 μm cutoff HAWAII-2RG array, and a cold baffle reducing the direct thermal radiation to the IR array into the solid angle of f/2. The thermal background is suppressed below 0.1 photons pixel−1 s−1 even in the wide band of 0.9–1.35 μm under the environment of 290 K. WINERED had been installed to the 3.58 m New Technology Telescope at La Silla Observatory, ESO, since 2017. Even with the intermediate size telescope, WINERED was confirmed to provide a limiting magnitude (for SNR = 30 with 8 hr. integration time) of J = 16.4 mag for the Wide mode and J = 15.1 mag for the Hires mode, respectively, under the natural seeing conditions. These sensitivities are comparable to those for the existing NIR-HRSs attached to the 8–10 m class telescopes with AO. WINERED type spectrographs may become a critical not only for the currently on-going extremely large telescopes to reduce the developing cost and time but also for smaller telescopes to extend their lives with long programs.


1996 ◽  
Vol 169 ◽  
pp. 533-549
Author(s):  
Charles J. Lada

We now stand at the threshold of the 21st century having witnessed perhaps the greatest era of astronomical discovery in the history of mankind. During the twentieth century the subject of astronomy was revolutionized and completely transformed by technology and physics. Advances in technology that produced radio astronomy, infrared astronomy, UV, X and γ ray astronomy, large telescopes on the ground, in balloons, aircraft and space coupled with advances in nuclear, atomic and high energy physics forever changed the way in which the universe is viewed. Indeed, it is altogether likely that future historians of science will consider the twentieth century as the Golden Age of observational astronomy. As a measure of how far we have come in the last 100 years, recall that at the turn of this century the nature of spiral nebulae and of the Milky Way itself as an island universe were not yet revealed. The expansion of the universe and the microwave background were not yet discovered and exotic objects such as quasars, pulsars, gamma-ray bursters and black holes were not even envisioned by the most imaginative authors of science fiction. The interstellar medium, with its giant molecular clouds, magnetic fields and obscuring dust was unknown. Not even the nature of stars, these most fundamental objects of the astronomical universe, was understood.


1996 ◽  
Vol 160 ◽  
pp. 363-364
Author(s):  
S.A. Dazeley ◽  
P.G. Edwards ◽  
J.R. Patterson ◽  
G.P. Rowell ◽  
M. Sinnott ◽  
...  

TheCollaboration ofAustralia andNippon for aGAmmaRayObservatory in theOutback operates two large telescopes at Woomera (South Australia), which detect the Čerenkov light images produced in the atmosphere by electronpositron cascades initiated by very high energy (~1 TeV or 1012eV) gamma rays. These gamma rays arise from a different mechanism than at EGRET energies: inverse Compton (IC) emission from relativistic electrons.The spoke-like images are recorded by a multi-pixel camera which facilitates the rejection of the large numbers of oblique and ragged cosmic ray images. A field of view ~3.5° is required. The Australian team operates a triple 4 m diameter mirror telescope, BIGRAT, with a 37 photomultiplier tube camera and energy threshold 600 GeV. The Japanese operate a single, highly accurate 3.8 m diameter f/1 telescope and high resolution 256 photomultipler tube camera. In 1998 a new 7 m telescope is planned for Woomera with a design threshold ~;200GeV.


Author(s):  
Davide Greggio ◽  
Christian Schwab ◽  
Demetrio Magrin ◽  
Simone Di Filippo ◽  
Valentina Viotto ◽  
...  

2011 ◽  
Vol 19 (18) ◽  
pp. 17099 ◽  
Author(s):  
Mehdi Bahrami ◽  
Alexander V. Goncharov

Sign in / Sign up

Export Citation Format

Share Document