scholarly journals The future of carbon dioxide removal must be transdisciplinary

2020 ◽  
Vol 10 (5) ◽  
pp. 20200038
Author(s):  
Tamara Jane Zelikova

Carbon dioxide removal (CDR) represents a suite of pathways to remove carbon dioxide from the atmosphere and mitigate climate change. The importance of CDR has expanded in recent years as emission reductions are not at pace to meet climate goals. This CDR-themed issue brings together diverse perspectives in order to identify opportunities to integrate across CDR disciplines, create a more holistic research agenda and inform how CDR is deployed. The individual papers within the issue discuss engineered and nature-based CDR approaches as well as the broader social and behavioural dimensions of CDR development and deployment. Here, I summarize the main take-aways from these individual papers and present a path for integrating key lessons across disciplines to ensure CDR is scaled equitably and sustainably to deliver on its climate mitigation promise.

2021 ◽  
Vol 3 ◽  
Author(s):  
Alexandra Buylova ◽  
Mathias Fridahl ◽  
Naghmeh Nasiritousi ◽  
Gunilla Reischl

Carbon dioxide removal (CDR) increasingly features in climate scenarios that hold global warming well below 2°C by 2100. Given the continuous gap between climate mitigation pledges and the emission pathways that are aligned with achieving the temperature goals of the Paris Agreement, we would expect countries to promote CDR in their long-term planning to achieve mid-century targets. Yet, countries may not consider it their responsibility to contribute to the global response to climate change using CDR. Thus, a study of the respective country's long-term climate plans is both timely and vital. Such a study could reveal the pledged collective ambition, the contribution of CDR to the pledged ambition, and how the envisaged role of CDR is described by the different countries. This paper explores the long-term low emission development strategies (LT-LEDS) of countries in order to map the role of CDR in addressing climate change. We also supplement our examination of strategies with the opinions of climate experts. Based on an inductive coding of the material and a literature review, the analytical focus of the analysis includes CDR targets and planning, types of CDR, barriers and opportunities to CDR implementation, as well as international cooperation. Our study of 25 national LT-LEDS submitted to the UN or to the EU, as well as 23 interviews with climate experts, shows that national plans for CDR vary substantially across countries and are generally lacking in detail. The findings also demonstrate that CDR is perceived to be necessary and desirable for achieving mid-century climate goals, but also reveal variation in the intended role of CDR. We use an interpretive approach to outline three possible visions of CDR in climate action: as a panacea, as a necessary fallback and as a chimera. We conclude by discussing what our findings of the envisaged roles of CDR in addressing climate change mean for climate governance. This research thereby contributes to the literature on governing CDR with new comprehensive insights into the long-term climate strategies of countries.


2017 ◽  
Author(s):  
Christian Holz ◽  
Lori S Siegel ◽  
Eleanor Johnston ◽  
Andrew P Jones ◽  
John Sterman

2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Xiaohan Yang ◽  
Degao Liu ◽  
Haiwei Lu ◽  
David J. Weston ◽  
Jin-Gui Chen ◽  
...  

A grand challenge facing society is climate change caused mainly by rising CO2 concentration in Earth’s atmosphere. Terrestrial plants are linchpins in global carbon cycling, with a unique capability of capturing CO2 via photosynthesis and translocating captured carbon to stems, roots, and soils for long-term storage. However, many researchers postulate that existing land plants cannot meet the ambitious requirement for CO2 removal to mitigate climate change in the future due to low photosynthetic efficiency, limited carbon allocation for long-term storage, and low suitability for the bioeconomy. To address these limitations, there is an urgent need for genetic improvement of existing plants or construction of novel plant systems through biosystems design (or biodesign). Here, we summarize validated biological parts (e.g., protein-encoding genes and noncoding RNAs) for biological engineering of carbon dioxide removal (CDR) traits in terrestrial plants to accelerate land-based decarbonization in bioenergy plantations and agricultural settings and promote a vibrant bioeconomy. Specifically, we first summarize the framework of plant-based CDR (e.g., CO2 capture, translocation, storage, and conversion to value-added products). Then, we highlight some representative biological parts, with experimental evidence, in this framework. Finally, we discuss challenges and strategies for the identification and curation of biological parts for CDR engineering in plants.


Eos ◽  
2018 ◽  
Vol 99 ◽  
Author(s):  
Joshua Dean

Methane is generally considered secondary to carbon dioxide in its importance to climate change, but what role might methane play in the future if global temperatures continue to rise?


2021 ◽  
Author(s):  
Orestis Stavrakidis-Zachou ◽  
Konstadia Lika ◽  
Panagiotis Anastasiadis ◽  
Nikos Papandroulakis

Abstract Finfish aquaculture in the Mediterranean Sea faces increasing challenges due to climate change while potential adaptation requires a robust assessment of the arising threats and opportunities. This paper presents an approach developed to investigate effects of climate drivers on Greek aquaculture, a representative Mediterranean country with a leading role in the sector. Using a farm level approach, Dynamic Energy Budget models for European seabass and meagre were developed and environmental forcing was used to simulate changes in production and farm profitability under IPCC scenarios RCP45 and RCP85. The effects of temperature and extreme weather events at the individual and farm level were considered along with that of husbandry parameters such as stocking timing, market size, and farm location (inshore, offshore) for nine regions. The simulations suggest that at the individual level fish may benefit from warmer temperatures in the future in terms of growth, thus reaching commercial sizes faster, while the husbandry parameters may have as large an effect on growth as the projected shifts in climatic cues. However, this benefit will be largely offset by the adverse effects of extreme weather events at the population level. Such events will be more frequent in the future and, depending on the intensity one assigns to them, they could cause losses in biomass and farm profits that range from mild to detrimental for the industry. Overall, these results provide quantification of some of the potential threats for an important aquaculture sector while suggesting possibilities to benefit from emerging opportunities. Therefore, they could contribute to improving the sector’s readiness for tackling important challenges in the future.


One Earth ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 166-172
Author(s):  
Vanessa J. Schweizer ◽  
Kristie L. Ebi ◽  
Detlef P. van Vuuren ◽  
Henry D. Jacoby ◽  
Keywan Riahi ◽  
...  

2020 ◽  
Vol 10 (5) ◽  
pp. 20190138 ◽  
Author(s):  
Glen Dowell ◽  
Jeff Niederdeppe ◽  
Jamie Vanucchi ◽  
Timur Dogan ◽  
Kieran Donaghy ◽  
...  

Reports from a variety of bodies have highlighted the role that carbon dioxide removal (CDR) technologies and practices must play in order to try to avoid the worst effects of anthropogenic climate change. Research into the feasibility of these technologies is primarily undertaken by scholars in the natural sciences, yet, as we argue in this commentary, there is great value in collaboration between these scholars and their colleagues in the social sciences. Spurred by this belief, in 2019, a university and a non-profit organization organized and hosted a workshop in Washington, DC, intended to bring natural and physical scientists, technology developers, policy professionals and social scientists together to explore how to better integrate social science knowledge into the field of CDR research. The workshop sought to build interdisciplinary collaborations across CDR topics, draft new social science research questions and integrate and exchange disciplinary-specific terminology. But a snowstorm kept many social scientists who had organized the conference from making the trip in person. The workshop went on without them and organizers did the best they could to include the team remotely, but in the age before daily video calls, remote participation was not as successful as organizers had hoped. And thus, a workshop that was supposed to focus on social science integration moved on, without many of the social scientists who organized the event. The social scientists in the room were supposed to form the dominant voice but with so many stuck in a snow storm, the balance of expertise shifted, as it often does when social scientists collaborate with natural and physical scientists. The outcomes of that workshop, lessons learned and opportunities missed, form the basis of this commentary, and they collectively indicate the barriers to integrating the natural, physical and social sciences on CDR. As the need for rapid, effective and successful CDR has only increased since that time, we argue that CDR researchers from across the spectrum must come together in ways that simultaneously address the technical, social, political, economic and cultural elements of CDR development, commercialization, adoption and diffusion if the academy is to have a material impact on climate change in the increasingly limited window we have to address it.


2020 ◽  
Vol 47 (17) ◽  
Author(s):  
Xinru Li ◽  
Kirsten Zickfeld ◽  
Sabine Mathesius ◽  
Karen Kohfeld ◽  
J. B. Robin Matthews

2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Nicholas A. Cumpsty

In the long term, the price of fuel will rise and it is now urgent to reduce carbon dioxide emissions to avoid catastrophic climate change. This lecture looks at power plant for electricity generation and aircraft propulsion, considering likely limits and possibilities for improvement. There are lessons from land-based gas turbines, which can be applied to aircraft, notably the small increases in efficiency from further increase in pressure ratio and turbine inlet temperature. Land-based gas turbines also point to the benefit of combining the properties of water with those of air to raise efficiency. Whereas the incentive to raise efficiency and reduce CO2 will force an increase in complexity of land-based power plant, the opportunities for this with aircraft are more limited. One of the opportunities with aircraft propulsion is to consider the whole aircraft operation and specification. Currently the specifications for new aircraft of take-off and climb thrust are not fully consistent with designing the engine for minimum fuel consumption and this will be addressed in some depth in the lecture. Preparing for the future entails alerting engineers to important possibilities and limitations associated with gas turbines which will mitigate climate change due to carbon dioxide emissions.


2009 ◽  
Vol 7 (1) ◽  
pp. 157-158
Author(s):  
Scott Barrett

Here are two challenges that the world has had to face in 2008: 1) Construction of the Large Hadron Collider was recently completed. Experiments using this machine will yield new knowledge of a fundamental kind. There is also a theoretical risk, believed to be vanishingly small but not zero, that the machine could create a black hole capable of destroying the Earth. Should the machine be turned on? 2) Fertilizing “desert” regions of the oceans with iron is expected to stimulate phytoplankton growth, sucking carbon dioxide into the oceans and thus helping to mitigate climate change. It might also alter vital ocean ecosystems. To know the full consequences of ocean fertilization, large-scale experiments are needed. Should they be allowed?


Sign in / Sign up

Export Citation Format

Share Document