scholarly journals Methane, Climate Change, and Our Uncertain Future

Eos ◽  
2018 ◽  
Vol 99 ◽  
Author(s):  
Joshua Dean

Methane is generally considered secondary to carbon dioxide in its importance to climate change, but what role might methane play in the future if global temperatures continue to rise?

2020 ◽  
Vol 10 (5) ◽  
pp. 20200038
Author(s):  
Tamara Jane Zelikova

Carbon dioxide removal (CDR) represents a suite of pathways to remove carbon dioxide from the atmosphere and mitigate climate change. The importance of CDR has expanded in recent years as emission reductions are not at pace to meet climate goals. This CDR-themed issue brings together diverse perspectives in order to identify opportunities to integrate across CDR disciplines, create a more holistic research agenda and inform how CDR is deployed. The individual papers within the issue discuss engineered and nature-based CDR approaches as well as the broader social and behavioural dimensions of CDR development and deployment. Here, I summarize the main take-aways from these individual papers and present a path for integrating key lessons across disciplines to ensure CDR is scaled equitably and sustainably to deliver on its climate mitigation promise.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Nicholas A. Cumpsty

In the long term, the price of fuel will rise and it is now urgent to reduce carbon dioxide emissions to avoid catastrophic climate change. This lecture looks at power plant for electricity generation and aircraft propulsion, considering likely limits and possibilities for improvement. There are lessons from land-based gas turbines, which can be applied to aircraft, notably the small increases in efficiency from further increase in pressure ratio and turbine inlet temperature. Land-based gas turbines also point to the benefit of combining the properties of water with those of air to raise efficiency. Whereas the incentive to raise efficiency and reduce CO2 will force an increase in complexity of land-based power plant, the opportunities for this with aircraft are more limited. One of the opportunities with aircraft propulsion is to consider the whole aircraft operation and specification. Currently the specifications for new aircraft of take-off and climb thrust are not fully consistent with designing the engine for minimum fuel consumption and this will be addressed in some depth in the lecture. Preparing for the future entails alerting engineers to important possibilities and limitations associated with gas turbines which will mitigate climate change due to carbon dioxide emissions.


Author(s):  
Nicholas A. Cumpsty

In the long term the price of fuel will rise and it is now urgent to reduce carbon dioxide emissions to avoid catastrophic climate change. This lecture looks at power plant for electricity generation and aircraft propulsion, considering likely limits and possibilities for improvement. There are lessons from land-based gas turbines which can be applied to aircraft, notably the small increases in efficiency from further increase in pressure ratio and turbine inlet temperature. Land-based gas turbines also point to the benefit of combining the properties of water with those of air to raise efficiency. Whereas the incentive to raise efficiency and reduce CO2 will force an increase in complexity of land-based power plant, the opportunities for this with aircraft are more limited. One of the opportunities with aircraft propulsion is to consider the whole aircraft operation and specification. Currently the specification for new aircraft of take-off and climb thrust are not fully consistent with designing the engine for minimum fuel consumption and this will be addressed in some depth in the lecture. Preparing for the future entails alerting engineers to important possibilities and limitations associated with gas turbines which will mitigate climate change due to carbon dioxide emissions.


Eos ◽  
2016 ◽  
Author(s):  
Shannon Hall

A new understanding of uncertainties in climate change models allows scientists to decide which source to tackle first in order to better forecast our planet's changing climate.


2020 ◽  
Vol 18 (2) ◽  
Author(s):  
John White

This article examines two scenarios for the future of education over the coming decades, mainly in England but also in comparable countries. It does so against the background of six large-scale historical processes now in progress: increasing longevity, the expansion of the internet, changes in work patterns, climate change, the rise in inequality and the coming of populism. Scenario 1 continues current patterns in general politics and education, while Scenario 2 radically diverges from them. Over half the article is devoted to the future of education in Scenario 2.


2016 ◽  
Vol 6 (4) ◽  
pp. 1 ◽  
Author(s):  
Arne Steinkraus

<p>This paper shifts the perspective of the recent green paradox literature towards the demand side. Based on a simple model, I show that a subsidy on input factors in a Cobb-Douglas production functionmay contribute substantially to postponing resource extraction into the future and, thereby, to limit the future costs of climate change. Specifically, indirect subsidies on human capital, such as investments in education, are plausible policy options to mitigate carbon dioxide emissions because it is robust to short-sighted incentives on the part of politicians and resource owners.</p>


2020 ◽  
Author(s):  
Rubén D. Manzanedo ◽  
Peter Manning

The ongoing COVID-19 outbreak pandemic is now a global crisis. It has caused 1.6+ million confirmed cases and 100 000+ deaths at the time of writing and triggered unprecedented preventative measures that have put a substantial portion of the global population under confinement, imposed isolation, and established ‘social distancing’ as a new global behavioral norm. The COVID-19 crisis has affected all aspects of everyday life and work, while also threatening the health of the global economy. This crisis offers also an unprecedented view of what the global climate crisis may look like. In fact, some of the parallels between the COVID-19 crisis and what we expect from the looming global climate emergency are remarkable. Reflecting upon the most challenging aspects of today’s crisis and how they compare with those expected from the climate change emergency may help us better prepare for the future.


Author(s):  
Laurie Essig

In Love, Inc., Laurie Essig argues that love is not all we need. As the future became less secure—with global climate change and the transfer of wealth to the few—Americans became more romantic. Romance is not just what lovers do but also what lovers learn through ideology. As an ideology, romance allowed us to privatize our futures, to imagine ourselves as safe and secure tomorrow if only we could find our "one true love" today. But the fairy dust of romance blinded us to what we really need: global movements and structural changes. By traveling through dating apps and spectacular engagements, white weddings and Disney honeymoons, Essig shows us how romance was sold to us and why we bought it. Love, Inc. seduced so many of us into a false sense of security, but it also, paradoxically, gives us hope in hopeless times. This book explores the struggle between our inner cynics and our inner romantic.


Author(s):  
S. A. Lysenko

The spatial and temporal particularities of Normalized Differential Vegetation Index (NDVI) changes over territory of Belarus in the current century and their relationship with climate change were investigated. The rise of NDVI is observed at approximately 84% of the Belarus area. The statistically significant growth of NDVI has exhibited at nearly 35% of the studied area (t-test at 95% confidence interval), which are mainly forests and undeveloped areas. Croplands vegetation index is largely descending. The main factor of croplands bio-productivity interannual variability is precipitation amount in vegetation period. This factor determines more than 60% of the croplands NDVI dispersion. The long-term changes of NDVI could be explained by combination of two factors: photosynthesis intensifying action of carbon dioxide and vegetation growth suppressing action of air warming with almost unchanged precipitation amount. If the observed climatic trend continues the croplands bio-productivity in many Belarus regions could be decreased at more than 20% in comparison with 2000 year. The impact of climate change on the bio-productivity of undeveloped lands is only slightly noticed on the background of its growth in conditions of rising level of carbon dioxide in the atmosphere.


Sign in / Sign up

Export Citation Format

Share Document