scholarly journals Impact of the implementation of rest days in live bird markets on the dynamics of H5N1 highly pathogenic avian influenza

2010 ◽  
Vol 8 (61) ◽  
pp. 1079-1089 ◽  
Author(s):  
G. Fournié ◽  
F. J. Guitian ◽  
P. Mangtani ◽  
A. C. Ghani

Live bird markets (LBMs) act as a network ‘hub’ and potential reservoir of infection for domestic poultry. They may therefore be responsible for sustaining H5N1 highly pathogenic avian influenza (HPAI) virus circulation within the poultry sector, and thus a suitable target for implementing control strategies. We developed a stochastic transmission model to understand how market functioning impacts on the transmission dynamics. We then investigated the potential for rest days—periods during which markets are emptied and disinfected—to modulate the dynamics of H5N1 HPAI within the poultry sector using a stochastic meta-population model. Our results suggest that under plausible parameter scenarios, HPAI H5N1 could be sustained silently within LBMs with the time spent by poultry in markets and the frequency of introduction of new susceptible birds' dominant factors determining sustained silent spread. Compared with interventions applied in farms (i.e. stamping out, vaccination), our model shows that frequent rest days are an effective means to reduce HPAI transmission. Furthermore, our model predicts that full market closure would be only slightly more effective than rest days to reduce transmission. Strategies applied within markets could thus help to control transmission of the disease.

PLoS ONE ◽  
2015 ◽  
Vol 10 (10) ◽  
pp. e0139917 ◽  
Author(s):  
Johanna Kurscheid ◽  
Joanne Millar ◽  
Muktasam Abdurrahman ◽  
I Gusti Agung Ayu Ambarawati ◽  
Wayan Suadnya ◽  
...  

2015 ◽  
Vol 21 (4) ◽  
pp. 629-637 ◽  
Author(s):  
Sharifa Nasreen ◽  
Salah Uddin Khan ◽  
Stephen P. Luby ◽  
Emily S. Gurley ◽  
Jaynal Abedin ◽  
...  

2008 ◽  
Vol 137 (4) ◽  
pp. 456-463 ◽  
Author(s):  
F. O. FASINA ◽  
S. P. R. BISSCHOP ◽  
T. M. JOANNIS ◽  
L. H. LOMBIN ◽  
C. ABOLNIK

SUMMARYAvian influenza caused infection and spread throughout Nigeria in 2006. Carcass samples (lung, liver, spleen, heart, trachea and intestine) from the different regions of Nigeria were processed for virus isolation. Infective allantoic fluids were tested for avian influenza viruses (AIV) and Newcastle disease virus using monospecific antisera. Thirty-five isolates were generated and characterized molecularly using the haemagglutinin gene. The molecular analysis indicated that different sublineages of the highly pathogenic avian influenza (HPAI) H5N1 viruses spread throughout Nigeria. We compared the Nigerian isolates with others from Africa and results indicated close similarities between isolates from West Africa and Sudan. Some of the analysed viruses showed genetic drift, and the implications of these for future epidemiology and ecology of avian influenza in Africa require further evaluation. The spread of primary outbreaks was strongly linked to trade (legal and illegal), live bird markets, inappropriate disposal, and poorly implemented control measures. No strong correlation existed between wild birds and HPAI H5N1 in Nigeria.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 212
Author(s):  
Josanne H. Verhagen ◽  
Ron A. M. Fouchier ◽  
Nicola Lewis

Highly pathogenic avian influenza (HPAI) outbreaks in wild birds and poultry are no longer a rare phenomenon in Europe. In the past 15 years, HPAI outbreaks—in particular those caused by H5 viruses derived from the A/Goose/Guangdong/1/1996 lineage that emerged in southeast Asia in 1996—have been occuring with increasing frequency in Europe. Between 2005 and 2020, at least ten HPAI H5 incursions were identified in Europe resulting in mass mortalities among poultry and wild birds. Until 2009, the HPAI H5 virus outbreaks in Europe were caused by HPAI H5N1 clade 2.2 viruses, while from 2014 onwards HPAI H5 clade 2.3.4.4 viruses dominated outbreaks, with abundant genetic reassortments yielding subtypes H5N1, H5N2, H5N3, H5N4, H5N5, H5N6 and H5N8. The majority of HPAI H5 virus detections in wild and domestic birds within Europe coincide with southwest/westward fall migration and large local waterbird aggregations during wintering. In this review we provide an overview of HPAI H5 virus epidemiology, ecology and evolution at the interface between poultry and wild birds based on 15 years of avian influenza virus surveillance in Europe, and assess future directions for HPAI virus research and surveillance, including the integration of whole genome sequencing, host identification and avian ecology into risk-based surveillance and analyses.


Viruses ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1389 ◽  
Author(s):  
Sol Jeong ◽  
Dong-Hun Lee ◽  
Jung-Hoon Kwon ◽  
Yu-Jin Kim ◽  
Sun-Hak Lee ◽  
...  

In October 2020, a highly pathogenic avian influenza (HPAI) subtype H5N8 virus was identified from a fecal sample of a wild mandarin duck (Aix galericulata) in South Korea. We sequenced all eight genome segments of the virus, designated as A/Mandarin duck/Korea/K20-551-4/2020(H5N8), and conducted genetic characterization and comparative phylogenetic analysis to track its origin. Genome sequencing and phylogenetic analysis show that the hemagglutinin gene belongs to H5 clade 2.3.4.4 subgroup B. All genes share high levels of nucleotide identity with H5N8 HPAI viruses identified from Europe during early 2020. Enhanced active surveillance in wild and domestic birds is needed to monitor the introduction and spread of HPAI via wild birds and to inform the design of improved prevention and control strategies.


2021 ◽  
Author(s):  
Periyasamy Vijayakumar ◽  
Ashwin Ashok Raut ◽  
Santhalembi Chingtham ◽  
Harshad V Murugkar ◽  
Diwakar D. Kulkarni ◽  
...  

Abstract Elucidation of molecular pathogenesis underlying virus-host interaction is important for the development of new diagnostic and therapeutic strategies against highly pathogenic avian influenza (HPAI) infection in chicken. However, chicken HPAI viral pathogenesis is not completely understood. To elucidate the intracellular signaling pathways and critical host proteins associated with influenza pathogenesis, we characterized the lung proteome of chicken infected with HPAI H5N1 virus (A/duck/India/02CA10/2011/Agartala). The chicken mass spectra data sets comprised1, 47, 451 MS scans and 19, 917 MS/MS scans. At local FDR 5% level, we identified total 3313 chicken proteins with presence of at least one unique peptide. At 12 hrs, 247 proteins are downregulated while 1754 proteins are downregulated at 48 hrs indicating that the host has succumbed to infection. There is expression of proteins of the predominant signaling pathways, such as TLR, RLR, NLR and JAK-STAT signaling. Activation of these pathways is associated with cytokine storm effect and thus may be the cause of severity of HPAI H5N1 infection in chicken. Further we identified proteins like MyD88, IKBKB, IRAK4, RELA, and MAVS involved in the critical signaling pathways and some other novel proteins (HNF4A, ELAVL1, FN1, COPS5, CUL1, BRCA1 and FYN) as main hub proteins that might play important roles in influenza pathogenesis in chicken. Taken together, we characterized the signaling pathways and the proteomic determinants responsible for disease pathogenesis in chicken infected with HPAI H5N1 virus.


Sign in / Sign up

Export Citation Format

Share Document