scholarly journals Photosymbiotic giant clams are transformers of solar flux

2014 ◽  
Vol 11 (101) ◽  
pp. 20140678 ◽  
Author(s):  
Amanda L. Holt ◽  
Sanaz Vahidinia ◽  
Yakir Luc Gagnon ◽  
Daniel E. Morse ◽  
Alison M. Sweeney

‘Giant’ tridacnid clams have evolved a three-dimensional, spatially efficient, photodamage-preventing system for photosymbiosis. We discovered that the mantle tissue of giant clams, which harbours symbiotic nutrition-providing microalgae, contains a layer of iridescent cells called iridocytes that serve to distribute photosynthetically productive wavelengths by lateral and forward-scattering of light into the tissue while back-reflecting non-productive wavelengths with a Bragg mirror. The wavelength- and angle-dependent scattering from the iridocytes is geometrically coupled to the vertically pillared microalgae, resulting in an even re-distribution of the incoming light along the sides of the pillars, thus enabling photosynthesis deep in the tissue. There is a physical analogy between the evolved function of the clam system and an electric transformer, which changes energy flux per area in a system while conserving total energy. At incident light levels found on shallow coral reefs, this arrangement may allow algae within the clam system to both efficiently use all incident solar energy and avoid the photodamage and efficiency losses due to non-photochemical quenching that occur in the reef-building coral photosymbiosis. Both intra-tissue radiometry and multiscale optical modelling support our interpretation of the system's photophysics. This highly evolved ‘three-dimensional’ biophotonic system suggests a strategy for more efficient, damage-resistant photovoltaic materials and more spatially efficient solar production of algal biofuels, foods and chemicals.

2016 ◽  
Vol 13 (16) ◽  
pp. 4637-4643 ◽  
Author(s):  
Juntian Xu ◽  
Lennart T. Bach ◽  
Kai G. Schulz ◽  
Wenyan Zhao ◽  
Kunshan Gao ◽  
...  

Abstract. Coccolithophores are a group of phytoplankton species which cover themselves with small scales (coccoliths) made of calcium carbonate (CaCO3). The reason why coccolithophores form these calcite platelets has been a matter of debate for decades but has remained elusive so far. One hypothesis is that they play a role in light or UV protection, especially in surface dwelling species like Emiliania huxleyi, which can tolerate exceptionally high levels of solar radiation. In this study, we tested this hypothesis by culturing a calcified and a naked strain under different light conditions with and without UV radiation. The coccoliths of E. huxleyi reduced the transmission of visible radiation (400–700 nm) by 7.5 %, that of UV-A (315–400 nm) by 14.1 % and that of UV-B (280–315 nm) by 18.4 %. Growth rates of the calcified strain (PML B92/11) were about 2 times higher than those of the naked strain (CCMP 2090) under indoor constant light levels in the absence of UV radiation. When exposed to outdoor conditions (fluctuating sunlight with UV radiation), growth rates of calcified cells were almost 3.5 times higher compared to naked cells. Furthermore, the relative electron transport rate was 114 % higher and non-photochemical quenching (NPQ) was 281 % higher in the calcified compared to the naked strain, implying higher energy transfer associated with higher NPQ in the presence of calcification. When exposed to natural solar radiation including UV radiation, the maximal quantum yield of photosystem II was only slightly reduced in the calcified strain but strongly reduced in the naked strain. Our results reveal an important role of coccoliths in mitigating light and UV stress in E. huxleyi.


2020 ◽  
Vol 71 (22) ◽  
pp. 7382-7392 ◽  
Author(s):  
Chuan Ching Foo ◽  
Alexandra J Burgess ◽  
Renata Retkute ◽  
Pracha Tree-Intong ◽  
Alexander V Ruban ◽  
...  

Abstract High light intensities raise photosynthetic and plant growth rates but can cause damage to the photosynthetic machinery. The likelihood and severity of deleterious effects are minimised by a set of photoprotective mechanisms, one key process being the controlled dissipation of energy from chlorophyll within PSII known as non-photochemical quenching (NPQ). Although ubiquitous, the role of NPQ in plant productivity is important because it momentarily reduces the quantum efficiency of photosynthesis. Rice plants overexpressing and deficient in the gene encoding a central regulator of NPQ, the protein PsbS, were used to assess the effect of protective effectiveness of NPQ (pNPQ) at the canopy scale. Using a combination of three-dimensional reconstruction, modelling, chlorophyll fluorescence, and gas exchange, the influence of altered NPQ capacity on the distribution of pNPQ was explored. A higher phototolerance in the lower layers of a canopy was found, regardless of genotype, suggesting a mechanism for increased protection for leaves that experience relatively low light intensities interspersed with brief periods of high light. Relative to wild-type plants, psbS overexpressors have a reduced risk of photoinactivation and early growth advantage, demonstrating that manipulating photoprotective mechanisms can impact both subcellular mechanisms and whole-canopy function.


2021 ◽  
Vol 53 (5) ◽  
pp. 409-414
Author(s):  
Richard P. Beckett ◽  
Farida V. Minibayeva ◽  
Kwanele W. G. Mkhize

AbstractNon-photochemical quenching (NPQ) plays an important role in protecting photosynthetic organisms from photoinhibition by dissipating excess light energy as heat. However, excess NPQ can greatly reduce the quantum yield of photosynthesis at lower light levels. Recently, there has been considerable interest in understanding how plants balance NPQ to ensure optimal productivity in environments in which light levels are rapidly changing. In the present study, chlorophyll fluorescence was used to study the induction and relaxation of non-photochemical quenching (NPQ) in the dark and the induction of photosynthesis in ten species of lichens, five sampled from exposed and five sampled from shaded habitats. Here we show that the main difference between sun and shade lichens is the rate at which NPQ relaxes in the dark, rather than the speed that photosynthesis starts upon illumination. During the first two minutes in the dark, NPQ values in the five sun species declined only by an average of 2%, while by contrast, in shade species the average decline was 40%. For lichens growing in microhabitats where light levels are rapidly changing, rapid relaxation of NPQ may enable their photobionts to use the available light most efficiently.


2000 ◽  
Vol 355 (1402) ◽  
pp. 1337-1344 ◽  
Author(s):  
Jon Nield ◽  
Christiane Funk ◽  
James Barber

This paper addresses the question of whether the PsbS protein of photosystem two (PS II) is located within the LHC II–PS II supercomplex for which a three–dimensional structure has been obtained by cryoelectron microscopy and single particle analysis. The PsbS protein has recently been implicated as the site for non–photochemical quenching. Based both on immunoblotting analyses and structural considerations of an improved model of the spinach LHC II–PS II supercomplex, we conclude that the PsbS protein is not located within the supercomplex. Analyses of other fractions resulting from the solubilization of PS II–enriched membranes derived from spinach suggest that the PsbS protein is located in the LHC II–rich regions that interconnect the supercomplex within the membrane.


2016 ◽  
Author(s):  
Juntian Xu ◽  
Lennart T. Bach ◽  
Kai G. Schulz ◽  
Wenyan zhao ◽  
Kunshan Gao ◽  
...  

Abstract. Coccolithophores are a group of phytoplankton species which cover themselves with small scales (coccoliths) made of calcium carbonate (CaCO3). The reason why coccolithophores form these calcite platelets has been a matter of debate since decades but has remained elusive so far. One hypothesis is that they serve a role in light/UV protection, especially in surface dwelling species like Emiliania huxleyi which can tolerate exceptionally high levels of solar radiation. In this study, we tested this hypothesis by culturing a calcifying and a non-calcifying strain under different light conditions with and without UV radiation. The coccoliths of E. huxleyi reduced the transmission of visible radiation (400–700 nm) by 7.5 %, UV-A (315–400 nm) by 14.1 % and UVB (280–315 nm) by 18.4 %. Growth rates of the calcifying strain (PML B92/11) were about 2 times higher than those of the non-calcifying strain (CCMP 2090) under indoor constant light levels in the absence of UV radiation. When exposed to outdoor conditions (fluctuating sunlight with UV radiation), growth rates of calcified cells were almost 3.5 times higher compared to naked cells. Furthermore, relative electron transport rate was 114 % higher and non-photochemical quenching (NPQ) 281 % higher in the calcifying compared to the non-calcifying strain, implying higher energy transfer associated with higher NPQ in the presence of calcification. When exposed to natural solar radiation including UV radiation, maximal quantum yield of photosystem II was only slightly reduced in the calcifying but strongly reduced in the non-calcifying strain. Our results reveal an important role of coccoliths in mitigating light and UV stress in E. huxleyi.


2019 ◽  
Vol 476 (20) ◽  
pp. 2981-3018 ◽  
Author(s):  
Petar H. Lambrev ◽  
Parveen Akhtar

Abstract The light reactions of photosynthesis are hosted and regulated by the chloroplast thylakoid membrane (TM) — the central structural component of the photosynthetic apparatus of plants and algae. The two-dimensional and three-dimensional arrangement of the lipid–protein assemblies, aka macroorganisation, and its dynamic responses to the fluctuating physiological environment, aka flexibility, are the subject of this review. An emphasis is given on the information obtainable by spectroscopic approaches, especially circular dichroism (CD). We briefly summarise the current knowledge of the composition and three-dimensional architecture of the granal TMs in plants and the supramolecular organisation of Photosystem II and light-harvesting complex II therein. We next acquaint the non-specialist reader with the fundamentals of CD spectroscopy, recent advances such as anisotropic CD, and applications for studying the structure and macroorganisation of photosynthetic complexes and membranes. Special attention is given to the structural and functional flexibility of light-harvesting complex II in vitro as revealed by CD and fluorescence spectroscopy. We give an account of the dynamic changes in membrane macroorganisation associated with the light-adaptation of the photosynthetic apparatus and the regulation of the excitation energy flow by state transitions and non-photochemical quenching.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 541a-541
Author(s):  
Lailiang Cheng ◽  
Leslie H. Fuchigami ◽  
Patrick J. Breen

Bench-grafted Fuji/M26 apple trees were fertigated with different concentrations of nitrogen by using a modified Hoagland solution for 6 weeks, resulting in a range of leaf N from 1.0 to 4.3 g·m–2. Over this range, leaf absorptance increased curvilinearly from 75% to 92.5%. Under high light conditions (1500 (mol·m–2·s–1), the amount of absorbed light in excess of that required to saturate CO2 assimilation decreased with increasing leaf N. Chlorophyll fluorescence measurements revealed that the maximum photosystem II (PSII) efficiency of dark-adapted leaves was relatively constant over the leaf N range except for a slight drop at the lower end. As leaf N increased, non-photochemical quenching under high light declined and there was a corresponding increase in the efficiency with which the absorbed photons were delivered to open PSII centers. Photochemical quenching coefficient decreased significantly at the lower end of the leaf N range. Actual PSII efficiency increased curvilinearly with increasing leaf N, and was highly correlated with light-saturated CO2 assimilation. The fraction of absorbed light potentially used for free radical formation was estimated to be about 10% regardless of the leaf N status. It was concluded that increased thermal dissipation protected leaves from photo-oxidation as leaf N declined.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1916
Author(s):  
Myriam Canonico ◽  
Grzegorz Konert ◽  
Aurélie Crepin ◽  
Barbora Šedivá ◽  
Radek Kaňa

Light plays an essential role in photosynthesis; however, its excess can cause damage to cellular components. Photosynthetic organisms thus developed a set of photoprotective mechanisms (e.g., non-photochemical quenching, photoinhibition) that can be studied by a classic biochemical and biophysical methods in cell suspension. Here, we combined these bulk methods with single-cell identification of microdomains in thylakoid membrane during high-light (HL) stress. We used Synechocystis sp. PCC 6803 cells with YFP tagged photosystem I. The single-cell data pointed to a three-phase response of cells to acute HL stress. We defined: (1) fast response phase (0–30 min), (2) intermediate phase (30–120 min), and (3) slow acclimation phase (120–360 min). During the first phase, cyanobacterial cells activated photoprotective mechanisms such as photoinhibition and non-photochemical quenching. Later on (during the second phase), we temporarily observed functional decoupling of phycobilisomes and sustained monomerization of photosystem II dimer. Simultaneously, cells also initiated accumulation of carotenoids, especially ɣ–carotene, the main precursor of all carotenoids. In the last phase, in addition to ɣ-carotene, we also observed accumulation of myxoxanthophyll and more even spatial distribution of photosystems and phycobilisomes between microdomains. We suggest that the overall carotenoid increase during HL stress could be involved either in the direct photoprotection (e.g., in ROS scavenging) and/or could play an additional role in maintaining optimal distribution of photosystems in thylakoid membrane to attain efficient photoprotection.


Author(s):  
Franco V. A. Camargo ◽  
Federico Perozeni ◽  
Gabriel de la Cruz Valbuena ◽  
Luca Zuliani ◽  
Samim Sardar ◽  
...  

Polar Biology ◽  
2021 ◽  
Author(s):  
Deborah Bozzato ◽  
Torsten Jakob ◽  
Christian Wilhelm ◽  
Scarlett Trimborn

AbstractIn the Southern Ocean (SO), iron (Fe) limitation strongly inhibits phytoplankton growth and generally decreases their primary productivity. Diatoms are a key component in the carbon (C) cycle, by taking up large amounts of anthropogenic CO2 through the biological carbon pump. In this study, we investigated the effects of Fe availability (no Fe and 4 nM FeCl3 addition) on the physiology of Chaetoceros cf. simplex, an ecologically relevant SO diatom. Our results are the first combining oxygen evolution and uptake rates with particulate organic carbon (POC) build up, pigments, photophysiological parameters and intracellular trace metal (TM) quotas in an Fe-deficient Antarctic diatom. Decreases in both oxygen evolution (through photosynthesis, P) and uptake (respiration, R) coincided with a lowered growth rate of Fe-deficient cells. In addition, cells displayed reduced electron transport rates (ETR) and chlorophyll a (Chla) content, resulting in reduced cellular POC formation. Interestingly, no differences were observed in non-photochemical quenching (NPQ) or in the ratio of gross photosynthesis to respiration (GP:R). Furthermore, TM quotas were measured, which represent an important and rarely quantified parameter in previous studies. Cellular quotas of manganese, zinc, cobalt and copper remained unchanged while Fe quotas of Fe-deficient cells were reduced by 60% compared with High Fe cells. Based on our data, Fe-deficient Chaetoceros cf. simplex cells were able to efficiently acclimate to low Fe conditions, reducing their intracellular Fe concentrations, the number of functional reaction centers of photosystem II (RCII) and photosynthetic rates, thus avoiding light absorption rather than dissipating the energy through NPQ. Our results demonstrate how Chaetoceros cf. simplex can adapt their physiology to lowered assimilatory metabolism by decreasing respiratory losses.


Sign in / Sign up

Export Citation Format

Share Document