scholarly journals From chemical soup to computing circuit: transforming a contiguous chemical medium into a logic gate network by modulating its external conditions

2019 ◽  
Vol 16 (158) ◽  
pp. 20190190
Author(s):  
Matthew Egbert ◽  
Jean-Sébastien Gagnon ◽  
Juan Pérez-Mercader

It has been shown that it is possible to transform a well-stirred chemical medium into a logic gate simply by varying the chemistry’s external conditions (feed rates, lighting conditions, etc.). We extend this work, showing that the same method can be generalized to spatially extended systems. We vary the external conditions of a well-known chemical medium (a cubic autocatalytic reaction–diffusion model), so that different regions of the simulated chemistry are operating under particular conditions at particular times. In so doing, we are able to transform the initially uniform chemistry, not just into a single logic gate, but into a functionally integrated network of diverse logic gates that operate as a basic computational circuit known as a full-adder.

1997 ◽  
Vol 11 (14) ◽  
pp. 1717-1730 ◽  
Author(s):  
Fernando Castelpoggi ◽  
Horacio S. Wio ◽  
Damian H. Zanette

We exploit the concept of the nonequilibrium potential in order to analize the approach to stationary homogeneous and nonhomogeneous equilibrium states in a bounded bistable reaction-diffusion model. The analysis proceeds through the study of the Lyapunov functional, in terms of a control parameter -the threshold parameter ϕc-in the neighbourghood of a critical point (where a stable and an unstable pattern coalesce), that clearly shows the phenomenon of critical slowing-down in a spatially extended system.


1997 ◽  
Vol 11 (18) ◽  
pp. 2207-2215
Author(s):  
Dima Mozyrsky ◽  
Vladimir Privman ◽  
Steven P. Hotaling

We offer an alternative to the conventional network formulation of quantum computing. We advance the analog approach to quantum logic gate/circuit construction. As an illustration, we consider the spatially extended NOT gate as the first step in the development of this approach. We derive an explicit form of the interaction Hamiltonian corresponding to this gate and analyze its properties. We also discuss general extensions to the case of certain time-dependent interactions which may be useful for practical realization of quantum logic gates.


2016 ◽  
Vol 24 (04) ◽  
pp. 431-456 ◽  
Author(s):  
A. K. MISRA ◽  
ALOK GUPTA

Understanding the spatio-temporal dynamics of cholera outbreaks may help in devising more effective control procedures. In this paper, we have considered a reaction–diffusion system for biological control of cholera epidemic. Firstly, we have focused on temporal evolution of cholera in a region and its control using lytic bacteriophage in the aquatic reservoirs. Then, we have explored the effect of spatial dispersion of populations on the disease dynamics. We have observed the onset of sustained oscillations via Hopf-bifurcation for the endemic state of temporal system. This onset of fluctuations in populations depends upon the phage adsorption rate. But in the spatially extended setting, all the populations stabilize i.e., the spatio-temporal distribution of all the populations becomes uniform. Some numerical computations have been done to verify analytical results.


2021 ◽  
Vol 11 (24) ◽  
pp. 12157
Author(s):  
Mohsen Vahabi ◽  
Pavel Lyakhov ◽  
Ali Newaz Bahar ◽  
Khan A. Wahid

The miniaturization of electronic devices and the inefficiency of CMOS technology due to the development of integrated circuits and its lack of responsiveness at the nanoscale have led to the acquisition of nanoscale technologies. Among these technologies, quantum-dot cellular automata (QCA) is considered one of the possible replacements for CMOS technology because of its extraordinary advantages, such as higher speed, smaller area, and ultra-low power consumption. In arithmetic and comparative circuits, XOR logic is widely used. The construction of arithmetic logic circuits using AND, OR, and NOT logic gates has a higher design complexity. However, XOR gate design has a lower design complexity. Hence, the efficient and optimized XOR logic gate is very important. In this article, we proposed a new XOR gate based on cell-level methodology, with the expected output achieved by the influence of the cells on each other; this design method caused less delay. However, this design was implemented without the use of inverter gates and crossovers, as well as rotating cells. Using the proposed XOR gate, two new full adder (FA) circuits were designed. The simulation results indicate the advantage of the proposed designs compared with previous structures.


2012 ◽  
Vol 22 (11) ◽  
pp. 1250283 ◽  
Author(s):  
VICTOR EROKHIN ◽  
GERARD DAVID HOWARD ◽  
ANDREW ADAMATZKY

Memristors are promising next-generation memory candidates that are nonvolatile, possess low power requirements and are capable of nanoscale fabrication. In this article, we physically realize and describe the use of organic memristors in designing stateful boolean logic gates for the AND OR and NOT operations. The output of these gates is analog and dependent on the length of time that suitable charge is applied to the inputs, displaying a learning property. Results may be also interpreted in a traditional binary manner through the use of a suitable thresholding function at the output. The memristive property of the gate allows for the production of analog outputs that vary based on the charge-dependent nonvolatile state of the memristor. We provide experimental results of physical fabrication of three types of logic gate. A simulation of a one-bit full adder comprised of memristive logic gates is also included, displaying varying response to two distinct input patterns.


2018 ◽  
Vol 15 (144) ◽  
pp. 20180169 ◽  
Author(s):  
Matthew Egbert ◽  
Jean-Sébastien Gagnon ◽  
Juan Pérez-Mercader

We introduce a new method for transforming chemical systems into desired logical operators (e.g. NAND gates) or similar signal-manipulation components. The method is based upon open-loop dynamic regulation, where external conditions such as feed-rate, lighting conditions, etc., are modulated according to a prescribed temporal sequence that is independent of the input to the network. The method is first introduced using a simple didactic model. We then show its application in transforming a well-stirred cubic autocatalytic reaction (often referred to as the Selkov–Gray–Scott model) into a logical NAND gate. We also comment on the applicability of the method to biological and other systems.


Sign in / Sign up

Export Citation Format

Share Document