scholarly journals Crystal structures of heterotypic nucleosomes containing histones H2A.Z and H2A

Open Biology ◽  
2016 ◽  
Vol 6 (6) ◽  
pp. 160127 ◽  
Author(s):  
Naoki Horikoshi ◽  
Yasuhiro Arimura ◽  
Hiroyuki Taguchi ◽  
Hitoshi Kurumizaka

H2A.Z is incorporated into nucleosomes located around transcription start sites and functions as an epigenetic regulator for the transcription of certain genes. During transcriptional regulation, the heterotypic H2A.Z/H2A nucleosome containing one each of H2A.Z and H2A is formed. However, previous homotypic H2A.Z nucleosome structures suggested that the L1 loop region of H2A.Z would sterically clash with the corresponding region of canonical H2A in the heterotypic nucleosome. To resolve this issue, we determined the crystal structures of heterotypic H2A.Z/H2A nucleosomes. In the H2A.Z/H2A nucleosome structure, the H2A.Z L1 loop structure was drastically altered without any structural changes of the canonical H2A L1 loop, thus avoiding the steric clash. Unexpectedly, the heterotypic H2A.Z/H2A nucleosome is more stable than the homotypic H2A.Z nucleosome. These data suggested that the flexible character of the H2A.Z L1 loop plays an essential role in forming the stable heterotypic H2A.Z/H2A nucleosome.

2016 ◽  
Author(s):  
Robert W. Read ◽  
Paul M. Berube ◽  
Steven J. Biller ◽  
Iva Neveux ◽  
Andres Cubillos-Ruiz ◽  
...  

AbstractProchlorococcus is a globally abundant marine cyanobacterium with many adaptations that reduce cellular nutrient requirements, facilitating growth in its nutrient-poor environment. One such genomic adaptation is the preferential utilization of amino acids containing fewer N-atoms, which minimizes cellular nitrogen requirements. We predicted that transcriptional regulation might be used to further reduce cellular N budgets during transient N limitation. To explore this, we compared transcription start sites (TSSs) in Prochlorococcus MED4 under N-deprived and N-replete conditions. Of 64 genes with primary and internal TSSs in both conditions, N-deprived cells initiated transcription downstream of primary TSSs more frequently than N-replete cells. Additionally, 117 genes with only an internal TSS demonstrated increased internal transcription under N-deprivation. These shortened transcripts encode predicted proteins with ~5-20% less N content compared to full-length transcripts. We hypothesized that low translation rates, which afford greater control over protein abundances, would be beneficial to relatively slow-growing organisms like Prochlorococcus. Consistent with this idea, we found that Prochlorococcus exhibits greater usage of glycine-glycine motifs, which cause translational pausing, when compared to faster growing microbes. Our findings indicate that structural changes occur within the Prochlorococcus MED4 transcriptome during N-deprivation, potentially altering the size and structure of proteins expressed under nutrient limitation.


Author(s):  
Gregory J. Czarnota

Chromatin structure at the fundamental level of the nucleosome is important in vital cellular processes. Recent biochemical and genetic analyses show that nucleosome structure and structural changes are very active participants in gene expression, facilitating or inhibiting transcription and reflecting the physiological state of the cell. Structural states and transitions for this macromolecular complex, composed of DNA wound about a heterotypic octamer of variously modified histone proteins, have been measured by physico-chemical techniques and by enzyme-accessibility and are recognized to occur with various post-translational modifications, gene activation, transformation and with ionic-environment. In spite of studies which indicate various forms of nucleosome structure, all current x-ray and neutron diffraction studies have consistently resulted in only one structure, suggestive of a static conformation. In contrast, two-dimensional electron microscopy studies and three-dimensional reconstruction techniques have yielded different structures. These fundamental differences between EM and other ultrastructural studies have created a long standing quandary, which I have addressed and resolved using spectroscopic electron microscopy and statistical analyses of nucleosome images in a study of nucleosome structure with ionic environment.


2019 ◽  
Vol 26 (6) ◽  
pp. 449-457
Author(s):  
Ting Song ◽  
Keke Cao ◽  
Yu dan Fan ◽  
Zhichao Zhang ◽  
Zong W. Guo ◽  
...  

Background: The significance of multi-site phosphorylation of BCL-2 protein in the flexible loop domain remains controversial, in part due to the lack of structural biology studies of phosphorylated BCL-2. Objective: The purpose of the study is to explore the phosphorylation induced structural changes of BCL-2 protein. Methods: We constructed a phosphomietic mutant BCL-2(62-206) (t69e, s70e and s87e) (EEEBCL- 2-EK (62-206)), in which the BH4 domain and the part of loop region was truncated (residues 2-61) to enable a backbone resonance assignment. The phosphorylation-induced structural change was visualized by overlapping a well dispersed 15N-1H heteronuclear single quantum coherence (HSQC) NMR spectroscopy between EEE-BCL-2-EK (62-206) and BCL-2. Results: The EEE-BCL-2-EK (62-206) protein reproduced the biochemical and cellular activity of the native phosphorylated BCL-2 (pBCL-2), which was distinct from non-phosphorylated BCL-2 (npBCL-2) protein. Some residues in BH3 binding groove occurred chemical shift in the EEEBCL- 2-EK (62-206) spectrum, indicating that the phosphorylation in the loop region induces a structural change of active site. Conclusion: The phosphorylation of BCL-2 induced structural change in BH3 binding groove.


PLoS ONE ◽  
2009 ◽  
Vol 4 (10) ◽  
pp. e7526 ◽  
Author(s):  
Alfredo Mendoza-Vargas ◽  
Leticia Olvera ◽  
Maricela Olvera ◽  
Ricardo Grande ◽  
Leticia Vega-Alvarado ◽  
...  

2022 ◽  
Author(s):  
Edward J Banigan ◽  
Wen Tang ◽  
Aafke A van den Berg ◽  
Roman R Stocsits ◽  
Gordana Wutz ◽  
...  

Cohesin organizes mammalian interphase chromosomes by reeling chromatin fibers into dynamic loops (Banigan and Mirny, 2020; Davidson et al., 2019; Kim et al., 2019; Yatskevich et al., 2019). "Loop extrusion" is obstructed when cohesin encounters a properly oriented CTCF protein (Busslinger et al., 2017; de Wit et al., 2015; Fudenberg et al., 2016; Nora et al., 2017; Sanborn et al., 2015; Wutz et al., 2017), and recent work indicates that other factors, such as the replicative helicase MCM (Dequeker et al., 2020), can also act as barriers to loop extrusion. It has been proposed that transcription relocalizes (Busslinger et al., 2017; Glynn et al., 2004; Lengronne et al., 2004) or interferes with cohesin (Heinz et al., 2018; Jeppsson et al., 2020; Valton et al., 2021; S. Zhang et al., 2021), and that active transcription start sites function as cohesin loading sites (Busslinger et al., 2017; Kagey et al., 2010; Zhu et al., 2021; Zuin et al., 2014), but how these effects, and transcription in general, shape chromatin is unknown. To determine whether transcription can modulate loop extrusion, we studied cells in which the primary extrusion barriers could be removed by CTCF depletion and cohesin's residence time and abundance on chromatin could be increased by Wapl knockout. We found evidence that transcription directly interacts with loop extrusion through a novel "moving barrier" mechanism, but not by loading cohesin at active promoters. Hi-C experiments showed intricate, cohesin-dependent genomic contact patterns near actively transcribed genes, and in CTCF-Wapl double knockout (DKO) cells (Busslinger et al., 2017), genomic contacts were enriched between sites of transcription-driven cohesin localization ("cohesin islands"). Similar patterns also emerged in polymer simulations in which transcribing RNA polymerases (RNAPs) acted as "moving barriers" by impeding, slowing, or pushing loop-extruding cohesins. The model predicts that cohesin does not load preferentially at promoters and instead accumulates at TSSs due to the barrier function of RNAPs. We tested this prediction by new ChIP-seq experiments, which revealed that the "cohesin loader" Nipbl (Ciosk et al., 2000) co-localizes with cohesin, but, unlike in previous reports (Busslinger et al., 2017; Kagey et al., 2010; Zhu et al., 2021; Zuin et al., 2014), Nipbl did not accumulate at active promoters. We propose that RNAP acts as a new type of barrier to loop extrusion that, unlike CTCF, is not stationary in its precise genomic position, but is itself dynamically translocating and relocalizes cohesin along DNA. In this way, loop extrusion could enable translocating RNAPs to maintain contacts with distal regulatory elements, allowing transcriptional activity to shape genomic functional organization.


2019 ◽  
Vol 400 (3) ◽  
pp. 351-366 ◽  
Author(s):  
Mikhail Barkovskiy ◽  
Elena Ilyukhina ◽  
Martin Dauner ◽  
Andreas Eichinger ◽  
Arne Skerra

Abstract Colchicine is a toxic alkaloid prevalent in autumn crocus (Colchicum autumnale) that binds to tubulin and inhibits polymerization of microtubules. Using combinatorial and rational protein design, we have developed an artificial binding protein based on the human lipocalin 2 that binds colchicine with a dissociation constant of 120 pm, i.e. 10000-fold stronger than tubulin. Crystallographic analysis of the engineered lipocalin, dubbed Colchicalin, revealed major structural changes in the flexible loop region that forms the ligand pocket at the open end of the eight-stranded β-barrel, resulting in a lid-like structure over the deeply buried colchicine. A cis-peptide bond between residues Phe71 and Pro72 in loop #2 constitutes a peculiar feature and allows intimate contact with the tricyclic ligand. Using directed evolution, we achieved an extraordinary dissociation half-life of more than 9 h for the Colchicalin-colchicine complex. Together with the chemical robustness of colchicine and availability of activated derivatives, this also opens applications as a general-purpose affinity reagent, including facile quantification of colchicine in biological samples. Given that engineered lipocalins, also known as Anticalin® proteins, represent a class of clinically validated biopharmaceuticals, Colchicalin may offer a therapeutic antidote to scavenge colchicine and reverse its poisoning effect in situations of acute intoxication.


2018 ◽  
Vol 293 (51) ◽  
pp. 19761-19770
Author(s):  
Marie-Elodie Cattin ◽  
Shelley A. Deeke ◽  
Sarah A. Dick ◽  
Zachary J. A. Verret-Borsos ◽  
Gayashan Tennakoon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document