scholarly journals Reproduction of Pisidium casertanum (Poli, 1791) in Arctic lake

2015 ◽  
Vol 2 (1) ◽  
pp. 140212 ◽  
Author(s):  
Yulia Bespalaya ◽  
Ivan Bolotov ◽  
Olga Aksenova ◽  
Alexander Kondakov ◽  
Inga Paltser ◽  
...  

Freshwater invertebrates are able to develop specific ecological adaptations that enable them to successfully inhabit an extreme environment. We investigated the brooding bivalve of Pisidium casertanum in Talatinskoe Lake, Vaigach Island, Arctic Russia. Here, quantitative surveys were conducted, with the collection and dissections of 765 molluscs, on the basis of which analyses on the brood sacs length (marsupia) and the number and size of embryos, were performed. In this study, the number of brooded embryos was positively correlated with the parent's shell length. The number of extramarsupial embryos was much lower than the number of intramarsupial embryos. Our research also showed that the brood sac length and embryos within one individual can vary significantly. Thus, we detected that P. casertanum has a specific brooding mechanism, accompanied by asynchronous development and embryos release by the parent. We suggest that such a mode could result in the coin-flipping effect that, presumably, increases the population breeding success in the harsh environment of the Arctic lake.

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Elena Basso ◽  
Federica Pozzi ◽  
Jessica Keister ◽  
Elizabeth Cronin

AbstractIn the late 19th and early 20th centuries, original photographs were sent to publishers so that they could be reproduced in print. The photographs often needed to be reworked with overpainting and masking, and such modifications were especially necessary for low-contrast photographs to be reproduced as a letterpress halftone. As altered objects, many of these marked-up photographs were simply discarded after use. An album at The New York Public Library, however, contains 157 such photographs, all relating to the Jackson–Harmsworth expedition to Franz Josef Land, from 1894 to 1897. Received as gifts from publishers, the photographs are heavily retouched with overpainting and masking, as well as drawn and collaged elements. The intense level of overpainting on many of the photographs, but not on others, raised questions about their production and alteration. Jackson’s accounts attested to his practice of developing and printing photographs on site, testing different materials and techniques—including platino-bromide and silver-gelatin papers—to overcome the harsh environmental conditions. In this context, sixteen photographs from the album were analyzed through a combination of non-invasive and micro-invasive techniques, including X-ray fluorescence (XRF) spectroscopy, fiber optics reflectance spectroscopy (FORS), Raman and Fourier-transform infrared (FTIR) spectroscopies, and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM/EDS). This analytical campaign aimed to evaluate the possible residual presence of silver halides in any of the preliminary and improved photographs. The detection of these compounds would be one of several factors supporting a hypothesis that some of the photographs in the album were indeed printed on site, in the Arctic, and, as a result, may have been impacted by the extreme environment. Additional goals of the study included the evaluation of the extent of retouching, providing a full characterization of the pigments and dyes used in overpainted prints, and comparing the results with contemporaneous photographic publications that indicate which coloring materials were available at the time. Further analyses shed light on the organic components present in the binders and photographic emulsions. This research has increased our knowledge of photographic processes undertaken in a hostile environment such as the Arctic, and shed light on the technical aspects of photographically illustrating books during the late 19th and early 20th centuries.


2013 ◽  
Vol 9 (2) ◽  
pp. 679-686 ◽  
Author(s):  
L. Cunningham ◽  
H. Vogel ◽  
V. Wennrich ◽  
O. Juschus ◽  
N. Nowaczyk ◽  
...  

Abstract. To date, terrestrial archives of long-term climatic change within the Arctic have widely been restricted to ice cores from Greenland and, more recently, sediments from Lake El'gygytgyn in northeast Arctic Russia. Sediments from this lake contain a paleoclimate record of glacial-interglacial cycles during the last three million years. Low-resolution studies at this lake have suggested that changes observed during Transition IV (the transition from marine isotope stage (MIS) 10 to MIS 9) are of greater amplitude than any observed since. In this study, geochemical parameters are used to infer past climatic conditions thus providing the first high-resolution analyses of Transition IV from a terrestrial Arctic setting. These results demonstrate that a significant shift in climate was subsequently followed by a rapid increase in biogenic silica (BSi) production. Following this sharp increase, bioproductivity remained high, but variable, for over a thousand years. This study reveals differences in the timing and magnitude of change within the ratio of silica to titanium (Si/Ti) and BSi records that would not be apparent in lower resolution studies. This has significant implications for the increasingly common use of Si/Ti data as an alternative to traditional BSi measurements.


European View ◽  
2019 ◽  
Vol 18 (2) ◽  
pp. 259-259
Author(s):  
Andreas Østhagen
Keyword(s):  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
G. Buscaino ◽  
M. Picciulin ◽  
D. E. Canale ◽  
E. Papale ◽  
M. Ceraulo ◽  
...  

Abstract In this study we analysed the acoustic properties and presence of haddock calls in the Arctic fjord Kongsfjorden (79° N–12° E, Svalbard Islands, Norway) in one year. Data were collected with three autonomous acoustic recorders located in the inner, middle, and outer parts of the fjord. The fjord is characterized by a gradient of oceanographic conditions from the inner to the outer part, reflecting changes from Arctic to Atlantic waters. Haddock sounds were more abundant in the outer fjord than in the middle fjord, whereas they were absent at the inner site. Mainly at the open-water site, the call abundance exhibited strong periodicity and a correlation with the cycles of neap tide (15 days) in August, with a clear diel cycle (24 h) in September and October. This result suggests that in this extreme environment with 24 h of light during summer, haddock regulate their acoustic activity according to the main available oscillating external physical driver, such as tide during the polar summer, while when the alternation of light/dark starts, they shift the periodicity of their calls to a diel cycle. Calls were recorded outside the spawning period (from July to October), and their characteristics indicated non-reproductive communicative contests. By using a detailed sound analysis based on previous laboratory studies for the first time, we suggest that the monitored population contains mainly juveniles (44% compared to 41% females and only approximately 15% mature males), showing the predominance of females in the middle fjord and juveniles at the open-water site.


Ocean Science ◽  
2018 ◽  
Vol 14 (6) ◽  
pp. 1423-1433 ◽  
Author(s):  
Claudine Hauri ◽  
Seth Danielson ◽  
Andrew M. P. McDonnell ◽  
Russell R. Hopcroft ◽  
Peter Winsor ◽  
...  

Abstract. Although Arctic marine ecosystems are changing rapidly, year-round monitoring is currently very limited and presents multiple challenges unique to this region. The Chukchi Ecosystem Observatory (CEO) described here uses new sensor technologies to meet needs for continuous, high-resolution, and year-round observations across all levels of the ecosystem in the biologically productive and seasonally ice-covered Chukchi Sea off the northwest coast of Alaska. This mooring array records a broad suite of variables that facilitate observations, yielding better understanding of physical, chemical, and biological couplings, phenologies, and the overall state of this Arctic shelf marine ecosystem. While cold temperatures and 8 months of sea ice cover present challenging conditions for the operation of the CEO, this extreme environment also serves as a rigorous test bed for innovative ecosystem monitoring strategies. Here, we present data from the 2015–2016 CEO deployments that provide new perspectives on the seasonal evolution of sea ice, water column structure, and physical properties, annual cycles in nitrate, dissolved oxygen, phytoplankton blooms, and export, zooplankton abundance and vertical migration, the occurrence of Arctic cod, and vocalizations of marine mammals such as bearded seals. These integrated ecosystem observations are being combined with ship-based observations and modeling to produce a time series that documents biological community responses to changing seasonal sea ice and water temperatures while establishing a scientific basis for ecosystem management.


Author(s):  
Svetlana Usenyuk-Kravchuk ◽  
Maria Gostyaeva ◽  
Alexandra Raeva ◽  
Nikolai Garin

2018 ◽  
Author(s):  
Claudine Hauri ◽  
Seth Danielson ◽  
Andrew M. P. McDonnell ◽  
Russell R. Hopcroft ◽  
Peter Winsor ◽  
...  

Abstract. Although Arctic marine ecosystems are changing rapidly, year-round monitoring is currently very limited and presents multiple challenges unique to this region. The Chukchi Ecosystem Observatory (CEO) described here uses new sensor technologies to meet needs for continuous, high resolution, and year-round observations across all levels of the ecosystem in the biologically productive and seasonally ice-covered Chukchi Sea off the northwest coast of Alaska. This mooring array records a broad suite of parameters that facilitate observations, yielding better understanding of physical, chemical and biological couplings, phenologies, and the overall state of this Arctic shelf marine ecosystem. While cold temperatures and eight months of sea ice cover present challenging conditions for the operation of the CEO, this extreme environment also serves as a rigorous test bed for innovative ecosystem monitoring strategies. Here, we present data from the 2015–16 CEO deployments that provide new perspectives on the seasonal evolution of sea ice, water column structure and physical properties, annual cycles in nitrate, dissolved oxygen, phytoplankton blooms and export, zooplankton abundance and vertical migration, the occurrence of Arctic cod, and vocalizations of marine mammals such as bearded seals. These integrated ecosystem observations are being combined with ship-based observations and modeling to produce a time-series that documents biological community responses to changing seasonal sea ice and water temperatures while establishing a scientific basis for ecosystem management.


Author(s):  
Andrzej Pisera ◽  
Klaus Rützler ◽  
Józef Kaz'mierczak ◽  
Stephan Kempe

Sponges are rare in extreme environments, and very little is known about their adaptations to such settings. Evidence from two species in a marine-derived midwater stratified crater lake on Satonda Island (Sumbawa, Indonesia) suggests their production of gemmules (resting bodies), a rare trait in marine sponges but common in freshwater forms, may be a survival mechanism in the lake's harsh environment. With its epilimnion hydrochemistry—characterized by changing alkalinity, salinity, and O2 levels over the region's wet and dry seasons—the lake sustains only a few marine macroscopic organisms, among them the suberitid sponges Protosuberites lacustris comb. nov. and Suberites sp. (Hadromerida: Suberitida). Both species belong to the same group as sponges reported from other marine-derived lakes with strongly varying and extreme environmental (especially chemical) parameters. The morphological characters, taxonomic position, ecological adaptations, environmental conditions, and biota associated with the sponges in this ecologically unique site are presented here.


Sign in / Sign up

Export Citation Format

Share Document