scholarly journals Amplified bioproductivity during Transition IV (332 000–342 000 yr ago): evidence from the geochemical record of Lake El'gygytgyn

2013 ◽  
Vol 9 (2) ◽  
pp. 679-686 ◽  
Author(s):  
L. Cunningham ◽  
H. Vogel ◽  
V. Wennrich ◽  
O. Juschus ◽  
N. Nowaczyk ◽  
...  

Abstract. To date, terrestrial archives of long-term climatic change within the Arctic have widely been restricted to ice cores from Greenland and, more recently, sediments from Lake El'gygytgyn in northeast Arctic Russia. Sediments from this lake contain a paleoclimate record of glacial-interglacial cycles during the last three million years. Low-resolution studies at this lake have suggested that changes observed during Transition IV (the transition from marine isotope stage (MIS) 10 to MIS 9) are of greater amplitude than any observed since. In this study, geochemical parameters are used to infer past climatic conditions thus providing the first high-resolution analyses of Transition IV from a terrestrial Arctic setting. These results demonstrate that a significant shift in climate was subsequently followed by a rapid increase in biogenic silica (BSi) production. Following this sharp increase, bioproductivity remained high, but variable, for over a thousand years. This study reveals differences in the timing and magnitude of change within the ratio of silica to titanium (Si/Ti) and BSi records that would not be apparent in lower resolution studies. This has significant implications for the increasingly common use of Si/Ti data as an alternative to traditional BSi measurements.

2012 ◽  
Vol 8 (6) ◽  
pp. 5341-5358 ◽  
Author(s):  
L. Cunningham ◽  
H. Vogel ◽  
V. Wennrich ◽  
O. Juschus ◽  
N. Nowaczyk ◽  
...  

Abstract. To date, terrestrial archives of long-term climatic change within the arctic region have widely been restricted to ice cores from Greenland and, more recently, sediments from Lake El'gygytgyn in Northeast Arctic Russia. Sediments from this lake contain a paleoclimate record of glacial-interglacial cycles during the last three million years. Low resolution studies at this lake have suggested that changes observed during Transition IV are of greater amplitude than any observed since. In this study, geochemical parameters are used to infer past climatic conditions thus providing the first high resolution analyses of Transition IV from a terrestrial arctic setting. These results demonstrate that a significant shift in climate was subsequently followed by a rapid increase in biogenic silica production. Following this sharp increase, bioproductivity remained high, but variable, for over a thousand years. This study reveals differences in the timing and magnitude of change within the ratio of silica to titanium (Si/Ti) and biogenic silica (BSi) records that would not be apparent in lower resolution studies. This has significant implications for the increasingly common use of Si/Ti data as an alternative to traditional BSi measurements.


Author(s):  
E. Yu. Nedorubova ◽  

Lake El'gygytgyn is located beyond the Arctic Circle in Chukotka at 67°30' N, 172°05' E and formed following a meteorite impact that occurred 3.6 million years ago (core interval 45.79-43.65 m). In its sediments, 5 palinologic zones are distinguished; they reflect changes in paleosuccessional systems and are consistent with MIS 33, 32, and 31 (1.114-1.062 mya). During warmings, thickets of birch trees and alder were widely spread. Cliseries, caused by macroclimate changes in cold substages, are characterized by a significant reduction in tree and shrub vegetation as well as by expansion of the arctic and subarctic tundras. Grass tundras dominated and were replaced by forest tundra communities in the valleys of the Anadyr Plateau surrounding the lake. The most abrupt change of phytocenosis succession systems is observed at the border of 32 and 31 isotopic stages. The succession processes are primarily expressed in a sharp increase of birch-shrub communities in the vegetation cover and in the appearance of late succession edificators (Carpinus, Corylus, Myrica, Quercus) forming forest climax associations.


2018 ◽  
Author(s):  
Dimitri Osmont ◽  
Isabel A. Wendl ◽  
Loïc Schmidely ◽  
Michael Sigl ◽  
Carmen P. Vega ◽  
...  

Abstract. Produced by the incomplete combustion of fossil fuel and biomass, black carbon (BC) contributes to Arctic warming by reducing snow albedo and thus triggering a snow-albedo feedback leading to increased snow melting. Therefore, it is of high importance to assess past BC emissions to better understand and constrain their role. However, only few long-term BC records are available from the Arctic, mainly originating from Greenland ice cores. Here, we present the first long-term and high-resolution refractory black carbon (rBC) record from Svalbard, derived from the analysis of two ice cores drilled at the Lomonosovfonna ice field in 2009 (LF-09) and 2011 (LF-11) and covering 800 years of atmospheric emissions. Our results show that rBC concentrations strongly increased from 1860 on due to anthropogenic emissions and reached two maxima, at the end of the 19th century and in the middle of the 20th century. No increase in rBC concentrations during the last decades was observed, which is corroborated by atmospheric measurements elsewhere in the Arctic but contradicts a previous study from another ice core from Svalbard. While melting may affect BC concentrations during periods of high temperatures, rBC concentrations remain well-preserved prior to the 20th century due to lower temperatures inducing little melt. Therefore, the preindustrial rBC record (before 1800), along with ammonium (NH4+), formate (HCOO−) and specific organic markers (vanillic acid (VA) and p-hydroxybenzoic acid (p-HBA)), was used as a proxy for biomass burning. Despite numerous single events, no long-term trend was observed over the time period 1222–1800 for rBC and NH4+. In contrast, formate, VA and p-HBA experience multi-decadal peaks reflecting periods of enhanced biomass burning. Most of the background variations and single peak events are corroborated by other ice-core records from Greenland and Siberia. We suggest that the paleofire record from the LF ice core primarily reflects biomass burning episodes from Northern Eurasia, induced by decadal-scale climatic variations.


Author(s):  
V. A. Merkulov ◽  
I. M. Ashik ◽  
L. А. Timokhov

New estimates of linear trends in the position of the level surface were obtained as a result of analysis of the data of long-term observations of sea level fluctuations at the stations of the seas of the Arctic Ocean. A rise in sea level is observed at almost all stations. In multi-year fluctuations of the level, periods characterized by different values of linear trends are identified. The reasons for the variability of local linear trends in the level of the Arctic seas from the 1950-1980 stage to the 1990-2015 period are analyzed. It is shown that the presence of local trends during the annual average levels at coast stations is a consequence of changes in climatic conditions reflected in changes in atmospheric and hydrosphere climatic indices, as well as in freshwater river runoff.


2020 ◽  
Author(s):  
Zhisheng An ◽  
Peter Molnar ◽  
Peizhen Zhang ◽  
Hendrik Vogel ◽  
Mark Level ◽  
...  

<p>Earth’s climate underwent dramatic cooling throughout much of the Cenozoic, which has been linked to continental drift, mountain building, and the formation and expansion of ice-sheets in Antarctica and the Arctic. In particular, the India-Asia collision and uplift of the Tibetan Plateau (TP) have been posited as critical events responsible for increasing the rates of physical and chemical weathering on land, thereby decreasing the CO2 concentration of the atmosphere. The uplift of the TP ultimately led to the onset of the complexly coupled monsoon-arid environmental system in East Asia. Global-scale studies of Cenozoic deep-sea sediments and Quaternary ice cores indicate that, superimposed to the long-term cooling trend, climate variability at orbital-to-centennial time-scales is primarily induced by changing solar insolation and irradiance, and strongly modulated by complex internal land-air-ocean interactions. From the continental perspective, however, both the dynamics and impacts of long-term climate evolution and short-term climate variability remain poorly constrained due to the paucity of continuous terrestrial sequences spanning the entire Cenozoic.<br>The Weihe Basin is located in the monsoon-sensitive region to the north of the Qinling Mountains, a landform that constitutes the geographic and climatic boundary between northern and southern China. In the depocentre of this basin, a predominantly lacustrine sedimentary sequence with a thickness of >7 km, provides an unprecedented opportunity for: (1) reconstructing tectonic-to-millennial-scale climate changes from the Eocene to the present; (2) elucidating basin-mountain coupling processes; (3) assessing the effects of Cenozoic tectonic-climate interactions on the onset and evolution of the Asian paleomonsoon; and (4) investigating climatic/environmental impacts on the evolution of microbial communities. Importantly also, (5) sedimentary filling of the Weihe Basin can potentially yield unique high-resolution records of continental climate variability during high atmospheric CO2 periods of the Eocene, mid-Miocene, and Late Pliocene, and thus serve an analog for Earth’s near future climate.<br>The Weihe Basin Drilling Project (WBDP) proposes a two-phase drilling strategy to recover a complete as possible Cenozoic terrestrial sedimentary record from the eastern Weihe Basin depocenter. In the first phase (applied for here) we aim at producing a 3-km-long pilot sedimentary record (WBDP-1) to test the best suitable analytical approach and to reconstruct orbital-to-millennial-scale climate variability since the Late Miocene. In the second phase our aim is to produce a 7.5-km-long sedimentary record (WBDP-2) spanning the entire Cenozoic sedimentary infill of the Weihe Basin. The regional geological framework is well characterized through numerous exploration boreholes and detailed multichannel seismic reflection surveys. Scientific drilling operations will be accompanied by downhole logging, as well as on- and off-site analyses of the retrieved cores. The WBDP-1 borehole is expected to yield a world-class paleoclimate record for the last ~10 Ma and lead to fundamental advances in our understanding of multi-timescale climate variability and tectonic-climate monsoon linkages. The project will also enhance public awareness of human adaptation to Earth’s changing environment.</p>


The Holocene ◽  
2019 ◽  
Vol 29 (7) ◽  
pp. 1189-1197 ◽  
Author(s):  
Sandra O Brugger ◽  
Erika Gobet ◽  
Thomas Blunier ◽  
César Morales-Molino ◽  
André F Lotter ◽  
...  

Arctic environments may respond very sensitively to ongoing global change, as observed during the past decades for Arctic vegetation. Only little is known about the broad-scale impacts of early and mid 20th-century industrialization and climate change on remote Arctic environments. Palynological analyses of Greenland ice cores may provide invaluable insights into the long-term vegetation, fire, and pollution dynamics in the Arctic region. We present the first palynological record from a Central Greenland ice core (Summit Eurocore ’89, 72°35’N, 37°38’W; the location of Greenland Ice Core Project GRIP) that provides novel high-resolution microfossil data on Arctic environments spanning AD 1730–1989. Our data suggest an expansion of birch woodlands after AD 1850 that was abruptly interrupted at the onset of the 20th century despite favorable climatic conditions. We therefore attribute this Betula woodland decline during the 20th century to anthropogenic activities such as sheep herding and wood collection in the sub-Arctic. First signs of coal burning activities around AD 1900 coincide with the onset of Arctic coal mining. The use of coal and fire activity increased steadily until AD 1989 resulting in microscopic-size pollution of the ice sheet. We conclude that human impact during the 20th century strongly affected (sub)-Arctic environments. Moreover, ecosystems have changed through the spread of adventive plant species (e.g. Ranunculus acris, Rumex) and the destruction of sparse native woodlands. We show for the first time that optical palynology allows paleoecological reconstructions in extremely remote sites >500 km from potential sources, if adequate methods are used.


2018 ◽  
Vol 18 (17) ◽  
pp. 12777-12795 ◽  
Author(s):  
Dimitri Osmont ◽  
Isabel A. Wendl ◽  
Loïc Schmidely ◽  
Michael Sigl ◽  
Carmen P. Vega ◽  
...  

Abstract. Produced by the incomplete combustion of fossil fuel and biomass, black carbon (BC) contributes to Arctic warming by reducing snow albedo and thus triggering a snow-albedo feedback leading to increased snowmelt. Therefore, it is of high importance to assess past BC emissions to better understand and constrain their role. However, only a few long-term BC records are available from the Arctic, mainly originating from Greenland ice cores. Here, we present the first long-term and high-resolution refractory black carbon (rBC) record from Svalbard, derived from the analysis of two ice cores drilled at the Lomonosovfonna ice field in 2009 (LF-09) and 2011 (LF-11) and covering 800 years of atmospheric emissions. Our results show that rBC concentrations strongly increased from 1860 on due to anthropogenic emissions and reached two maxima, at the end of the 19th century and in the middle of the 20th century. No increase in rBC concentrations during the last decades was observed, which is corroborated by atmospheric measurements elsewhere in the Arctic but contradicts a previous study from another ice core from Svalbard. While melting may affect BC concentrations during periods of high temperatures, rBC concentrations remain well preserved prior to the 20th century due to lower temperatures inducing little melt. Therefore, the preindustrial rBC record (before 1800), along with ammonium (NH4+), formate (HCOO−) and specific organic markers (vanillic acid, VA, and p-hydroxybenzoic acid, p-HBA), was used as a proxy for biomass burning. Despite numerous single events, no long-term trend was observed over the time period 1222–1800 for rBC and NH4+. In contrast, formate, VA, and p-HBA experience multi-decadal peaks reflecting periods of enhanced biomass burning. Most of the background variations and single peak events are corroborated by other ice core records from Greenland and Siberia. We suggest that the paleofire record from the LF ice core primarily reflects biomass burning episodes from northern Eurasia, induced by decadal-scale climatic variations.


Archeion ◽  
2021 ◽  
Vol 122 ◽  
Author(s):  
Jędrzej Sabliński ◽  
Alfredo Trujillo

The purpose of the analysis is to demonstrate the effectiveness of Piql technology data storage for long-term preservation. This technology has been confirmed by certified laboratory tests. The article presents a unique and effective technology for perpetual storage of data on physical media and a detailed description of data recording methods, including the equipment needed for this process. It also presents the conditions of packaging, storage, transport and protection of piqlFilm media, based on the experience of durability of this medium over the past several decades. The idea behind the creation of this technology, in addition to permanent storage, is the ability to read the stored data in the distant future. The data is stored in an open format, allowing read access without temporal or technological limitations. Piql has also, taking advantage of the unique geo-climatic conditions on the Arctic island of Svalbard, established a specialized archive called the Arctic World Archive or the End of the World Library, to store the most valuable data of international institutions and companies as well as the world’s cultural heritage. Piql. Studium technologii długotrwałej ochrony Celem analizy jest przedstawienie skuteczności zapisu danych w technologii Piql, w celu ich długoterminowej ochrony. Technologia ta została potwierdzona certyfikowanymi badaniami laboratoryjnymi. W artykule została zaprezentowana unikalna i skuteczna technologia wieczystego przechowywania danych na nośniku fizycznym oraz szczegółowy opis metod zapisu danych, wraz z urządzeniami potrzebnymi do tego procesu. Przedstawiono także warunki pakowania, magazynowania, transportu i zabezpieczenia nośnika piqlFilm, bazując na doświadczeniach trwałości tego nośnika z ostatnich kilkudziesięciu lat. Ideą przyświecającą stworzeniu tej technologii, oprócz trwałego przechowania, jest możliwość odczytu zapisanych danych w odległej przyszłości. Dane są przechowywane w formacie otwartym, umożliwiającym dostęp do odczytu bez ograniczeń czasowych i technologicznych. Piql stworzył również specjalistyczne archiwum, wykorzystujące unikalne warunki geo-klimatyczne na arktycznej wyspie Svalbard, nazwane Światowym Archiwum Arktycznym (Arctic World Archive) lub Biblioteką Końca Świata (End of the World Library), w celu przechowania najcenniejszych danych międzynarodowych instytucji i firm oraz światowego dziedzictwa kulturowego.


2013 ◽  
Vol 9 (1) ◽  
pp. 245-267 ◽  
Author(s):  
A. V. Lozhkin ◽  
P. M. Anderson

Abstract. Palynological data from Lake El'gygytgyn reveal responses of plant communities to a range of climatic conditions that can help assess the possible impact of global warming on arctoboreal ecosystems. Vegetation associated with climatic optima suggests two types of interglacial responses: one is dominated by deciduous taxa (the postglacial thermal maximum (PGTM) and marine isotope stage (MIS5)) and the second by evergreen conifers (MIS11, MIS31). The MIS11 forests show a similarity to Picea-Larix-Betula-Alnus forests of Siberia. While dark coniferous forest also characterizes MIS31, the pollen taxa show an affinity to the modern boreal forest of the lower Amur valley in the Russian Far East. Despite vegetation differences during the thermal maxima, all four glacial-interglacial transitions are alike, being dominated by deciduous woody taxa. Initially Betula shrub tundra established and was replaced by tundra with tree-sized shrubs (PGTM), Betula woodland (MIS5), or Betula-Larix (MIS11, MIS31) forest. The consistent occurrence of deciduous forest and/or high shrub tundra in all interglaciations as they approach or achieve maximum warmth underscores the significance of this biome for modeling efforts. The El'gygytgyn data also suggest the possible elimination or massive reduction of arctic plant communities under extreme warm-earth scenarios.


2020 ◽  
Author(s):  
Trevor Porter ◽  
Kira Holland ◽  
Duane Froese ◽  
Steven Kokelj

<p>Rapid and sustained warming of the northern high latitudes has led to increased permafrost thaw and retrogressive thaw slump (RTS) activity in some areas of the Arctic. Thaw slumps are common in the Tuktoyaktuk Coastlands (Northwest Territories, Canada) and expose relict ice wedge polygon networks that contain a long-term record of winter precipitation isotopes. Notably, the stable isotope geochemistry of ice wedges can be used as a paleotemperature proxy for the winter season, a seasonality that is largely missing from current understandings of Holocene paleoclimate change in the Arctic.</p><p> </p><p>In this study, we sampled lateral cross-sections of four relict ice wedges from RTS exposures at coastal sites on Hooper Island, Pelly Island, Richards Island and near Tuktoyaktuk. Ice blocks capturing the entire growth sequences of the ice wedges (i.e., ice wedge center to ice-sediment contact) were collected by chainsaw and kept frozen in field coolers, and later sub-sampled at high-resolution in a cold lab. The ice wedges were sub-sampled at 1-1.5 cm horizontal resolution, integrating ~1-3 ice veins per sample on average. We analysed the stable hydrogen- and oxygen-isotope ratios (δ<sup>2</sup>H and δ<sup>18</sup>O) of each sample (N = 803). The age of the ice was estimated by AMS-DO<sup>14</sup>C dating of 6 to 10 samples per ice wedge, evenly distributed across each wedge to capture the full range of ages. A composite δ<sup>18</sup>O record spanning the period 7,400-600 cal yr BP was also constructed using the dated samples only (N = 36). The all-sample co-isotope (δ<sup>2</sup>H-δ<sup>18</sup>O) data are defined by regression line that is remarkably similar to the Local Meteoric Water Line, suggesting the ice wedges reliably preserve the isotopic composition of local precipitation, which is strongly influenced by mean air temperatures. The composite record shows an increase in δ<sup>18</sup>O over the last 7,400 years which we interpret as a long-term warming trend of the mean winter climate. This warming trend is largely explained by increasing November-April insolation at 69°N, a result that is corroborated by two independent high-resolution ice wedge records from the Siberian Arctic and is also in agreement with model-based simulations of the winter climate. This record, the first of its kind in the North American Arctic, provides a more seasonally holistic perspective on Holocene climate change and highlights the potential to use permafrost isotope records to fill paleoclimate knowledge gaps in Arctic regions were more traditional precipitation isotope archives (e.g., ice cores) do not exist.</p>


Sign in / Sign up

Export Citation Format

Share Document