scholarly journals Tools to tipple: ethanol ingestion by wild chimpanzees using leaf-sponges

2015 ◽  
Vol 2 (6) ◽  
pp. 150150 ◽  
Author(s):  
Kimberley J. Hockings ◽  
Nicola Bryson-Morrison ◽  
Susana Carvalho ◽  
Michiko Fujisawa ◽  
Tatyana Humle ◽  
...  

African apes and humans share a genetic mutation that enables them to effectively metabolize ethanol. However, voluntary ethanol consumption in this evolutionary radiation is documented only in modern humans. Here, we report evidence of the long-term and recurrent ingestion of ethanol from the raffia palm ( Raphia hookeri, Arecaceae) by wild chimpanzees ( Pan troglodytes verus ) at Bossou in Guinea, West Africa, from 1995 to 2012. Chimpanzees at Bossou ingest this alcoholic beverage, often in large quantities, despite an average presence of ethanol of 3.1% alcohol by volume (ABV) and up to 6.9% ABV. Local people tap raffia palms and the sap collects in plastic containers, and chimpanzees use elementary technology—a leafy tool—to obtain this fermenting sap. These data show that ethanol does not act as a deterrent to feeding in this community of wild apes, supporting the idea that the last common ancestor of living African apes and modern humans was not averse to ingesting foods containing ethanol.

2019 ◽  
pp. 45-59
Author(s):  
Kimberley J. Hockings ◽  
Miho Ito ◽  
Gen Yamakoshi

Local Manon people and wild chimpanzees coexist at Bossou in Guinea, West Africa, and overlap in their use of many resources. Wine from the raffia palm (Raphia hookeri, Arecaceae) is widely consumed and is an integral part of people’s daily lives and ceremonies. It functions as a social lubricant and is a crucial aspect of men’s social relations. Local palm wine harvesters tap wild raffia palms and the sap that collects in plastic containers quickly ferments. Chimpanzees also ingest this alcoholic beverage using elementary technology—a leafy tool. These observations provide important support for molecular data that the last common ancestor of living African apes and modern humans was not averse to ingesting foods containing ethanol. They also demonstrate how understanding human practices are crucial for accurately interpreting chimpanzee behaviour, including ethanol consumption, in shared landscapes.


Bionatura ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 1593-1601
Author(s):  
Michael Zuarez-Chamba ◽  
Luis Puma ◽  
Jorge Bermeo ◽  
Eugenio Andrade ◽  
Stalin A. Bermúdez-Puga ◽  
...  

Modern humans' unique cognitive abilities regarding Neanderthals and other primate's lineages are frequently attributed to the differences in brain size development and evolution. However, recent studies have established the critical role of genomic and genetic benchmarking in analyzing the cognitive evolution between modern humans and primates, focused mainly on searching for involved genes in neurogenesis. PSD95 protein (named PSD95p) has a key role in modulating synaptic plasticity, learning, and memory skills. Thus, the present study aimed to determine the possible variations of the PSD95 gene between modern humans, Neanderthals, and other hominid primate species using bioinformatics tools. The results showed 14 polymorphisms compared with the contemporary human PSD95 gene, of which 13 were silent mutations, and only one was a non-silent mutation at the nucleotide position 281. Despite polymorphisms found at the nucleotide sequences, the PSD95p of humans and chimpanzees are 100% identical. Likewise, the gorilla and orangutan PSD95p are 100% identical, although a 103-amino acid deletion characterizes them at the N-terminal end (1-103), suggesting that it behaves like a non-functional protein. Interestingly, the single nucleotide polymorphism (SNP) found at position 281 in the Neanderthal PSD95 gene leads to a change of the E94 to valine V94 in the polyubiquitination domain (PEST) and variation in the three-dimensional structure of PSD95 protein. We prompt that this structural change in the PEST domain could induce a loss of PSD95p function and, therefore, an alteration in synaptic plasticity forms such as long-term potentiation (LTP) and long-term depression (LTD). These findings open a possible hypothesis supporting the idea that humans' cognitive evolution after separating our last common ancestor with Neanderthals lineage could have been accompanied by discrete changes in the PSD95p polyubiquitination domain.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1788 ◽  
Author(s):  
Julien Louys ◽  
Gilbert J. Price ◽  
Sue O’Connor

Stegodons are a commonly recovered extinct proboscidean (elephants and allies) from the Pleistocene record of Southeast Asian oceanic islands. Estimates on when stegodons arrived on individual islands and the timings of their extinctions are poorly constrained due to few reported direct geochronological analyses of their remains. Here we report on uranium-series dating of a stegodon tusk recovered from the Ainaro Gravels of Timor. The six dates obtained indicate the local presence of stegodons in Timor at or before 130 ka, significantly pre-dating the earliest evidence of humans on the island. On the basis of current data, we find no evidence for significant environmental changes or the presence of modern humans in the region during that time. Thus, we do not consider either of these factors to have contributed significantly to their extinction. In the absence of these, we propose that their extinction was possibly the result of long-term demographic and genetic declines associated with an isolated island population.


Author(s):  
STEVEN MITHEN

The modern human is a product of six million years of evolution wherein it is assumed that the ancestor of man resembles that of a chimpanzee. This assumption is based on the similarities of the ape-like brain size and post-cranial characteristics of the earliest hominid species to chimpanzees. Whilst it is unclear whether chimpanzees share the same foresight and contemplation of alternatives as with humans, it is nevertheless clear that chimpanzees lack creative imagination — an aspect of modern human imagination that sets humanity apart from its hominid ancestors. Creative imagination pertains to the ability to combine different forms of knowledge and ways of thinking to form creative and novel ideas. This chapter discusses seven critical steps in the evolution of the human imagination. These steps provide a clear picture of the gradual emergence of creative imagination in humans from their primitive origins as Homo sapiens some 200,000 years ago. This chronological evolution of the imaginative mind of humans involves both biological and cultural change that began soon after the divergence of the two lineages that led to modern humans and African apes.


Author(s):  
Duilio Garofoli

Evidence of feather extraction from scavenging birds by late Neanderthal populations, supposedly for ornamental reasons, has been recently used to bolster the case for Neanderthal symbolism and cognitive equivalence with modern humans. This argument resonates with the idea that the production and long-term maintenance of body ornaments necessarily require a cluster of abilities defined here as the material symbolism package. This implies the construction of abstract meanings, which are then mentally imposed to artifacts and socially shared through full-blown mindreading, assisted by a meta-representational language. However, a set of radical enactive abilities, mainly direct social perception and situated concepts, is sufficient to explain the emergence of ornamental feathers without necessarily involving the material symbolism package. The embodied social structure created by body ornaments, augmented through behavioral-contextual narratives, suffices to explain even the long-term maintenance of this practice without mentalism. Costly neurocentric assumptions conceiving the material symbolism package as a homuncular adaptation are eschewed by applying a non-symbolic interpretation of feathers as cognitive scaffolds. It will be concluded that the presence of body adornment traditions in the Neanderthal archaeological record does not warrant the cognitive equivalence with modern humans, for it does not constrain a meta-representational level of meaning.


Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 953 ◽  
Author(s):  
Marzena Ciechomska ◽  
Leszek Roszkowski ◽  
Wlodzimierz Maslinski

Rheumatoid arthritis (RA) is a long-term autoimmune disease of unknown etiology that leads to progressive joint destruction and ultimately to disability. RA affects as much as 1% of the population worldwide. To date, RA is not a curable disease, and the mechanisms responsible for RA development have not yet been well understood. The development of more effective treatments and improvements in the early diagnosis of RA is direly needed to increase patients’ functional capacity and their quality of life. As opposed to genetic mutation, epigenetic changes, such as DNA methylation, are reversible, making them good therapeutic candidates, modulating the immune response or aggressive synovial fibroblasts (FLS—fibroblast-like synoviocytes) activity when it is necessary. It has been suggested that DNA methylation might contribute to RA development, however, with insufficient and conflicting results. Besides, recent studies have shown that circulating cell-free methylated DNA (ccfDNA) in blood offers a very convenient, non-invasive, and repeatable “liquid biopsy”, thus providing a reliable template for assessing molecular markers of various diseases, including RA. Thus, epigenetic therapies controlling autoimmunity and systemic inflammation may find wider implications for the diagnosis and management of RA. In this review, we highlight current challenges associated with the treatment of RA and other autoimmune diseases and discuss how targeting DNA methylation may improve diagnostic, prognostic, and therapeutic approaches.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Pratiksha Poudel ◽  
Kamila Ismailova ◽  
Lars Bo Andersen ◽  
Sofus C. Larsen ◽  
Berit L. Heitmann

Abstract Background Several studies have suggested a link between the type of alcoholic beverage consumption and body weight. However, results from longitudinal studies have been inconsistent, and the association between adolescent alcohol consumption long-term weight gain has generally not been examined. Methods The study was based on data from 720 Danish adolescents aged between 15 to 19 years at baseline from the Danish Youth and Sports Study (YSS). Self-reported alcohol use, height, weight, smoking, social economic status (SES) and physical activity levels were assessed in baseline surveys conducted in 1983 and 1985, and in the follow up survey which was conducted in 2005. Multiple linear regression analyses were used to examine the association between alcohol consumption in adolescence and subsequent weight gain later in midlife. Results There was no significant association between total alcohol consumption during adolescence and change in BMI into midlife (P = 0.079) (β − 0.14; 95% CI -0.28, 0.005). Wine consumption was found to be inversely associated to subsequent BMI gain (P = 0.001) (β − 0.46; 95% CI -0.82, − 0.09) while the results were not significant for beer and spirit. The relationship did not differ by gender, but smoking status was found to modify the relationship, and the inverse association between alcohol and BMI gain was seen only among non-smokers (P = 0.01) (β − 0.24; 95% CI -0.41, − 0.06) while no association was found among smokers. Neither adolescent nor attained socioeconomic status in adulthood modified the relationship between alcohol intake and subsequent BMI gain. Conclusion Among non-smoking adolescents, consumption of alcohol, and in particular wine, seems to be associated with less weight gain until midlife. Trial registration The YSS cohort was retrospectively registered on August 2017. (Study ID number: NCT03244150).


Anthropology ◽  
2020 ◽  
Author(s):  
Frederick L. Coolidge ◽  
Thomas Wynn

Cognitive archaeology may be divided into two branches. Evolutionary cognitive archaeology (ECA) is the discipline of prehistoric archaeology that studies the evolution of human cognition. Practitioners are united by a methodological commitment to the idea that archaeological traces of past activity provide access to the minds of the agents responsible. The second branch, ideational cognitive archaeology, encompasses archaeologists who strive to discover the meaning of symbolic system, primarily through the analysis of iconography. This approach differs from ECA in its epistemology, historical roots, and citation universes, and focuses on comparatively recent time periods (after 10,000 years ago). Evolutionary cognitive archaeologists are concerned with the nature of cognition itself, and its evolutionary development from the time of the last common ancestor with chimpanzees to the final ascendancy of modern humans at the end of the Pleistocene. Although ECA methods are primarily archaeological, its theoretical grounding is in the cognitive sciences, including cognitive psychology, neuropsychology, and cognitive neuroscience. It is by its nature interdisciplinary. ECA differs from the allied discipline of evolutionary psychology in several important respects. Methodologically, ECA is a macroevolutionary science that studies physical evidence of past human cognition, including archaeological and fossil remains. Evolutionary psychology relies heavily on reverse engineering from controlled experiments on living humans. Theoretically, ECA is more eclectic, drawing on a variety of cognitive and evolutionary models; evolutionary psychology is committed to a neo-Darwinian, selectionist understanding of evolutionary change. The two approaches tend to study different components of human mental life, but are not inherently contradictory. ECA practitioners reconstruct prehistoric activities using well-established archaeological methods and techniques, including morphological analysis of artifacts to identify action sequences and decision patterns, functional analyses (e.g., microwear) to identify use patterns, and spatial patterns within sites to recognize activity loci (e.g., hearths). An increasingly important method is the actualistic recreation of prehistoric technologies to identify features not preserved in the archaeological remains. Neuroarchaeologists enhance such actualistic research by imaging the brains of the participants (most typically using fMRI), an approach that also contributes directly to cognitive science’s understanding of the neural basis of technical cognition. ECA practitioners take two non-mutually exclusive approaches to documenting human cognitive evolution. The first approach enriches the understanding of specific hominin taxa (i.e., Homo sapiens and their direct ancestors since 6 million years ago) by providing accounts of their cognitive life worlds, or by contrasting two taxa with one another. This approach is famously exemplified by attempts to contrast the abilities of Neandertals with those of modern humans. The second approach traces the evolution of specific cognitive abilities from the first appearance of stone tools 3.3 million years ago to the emergence of city-states 5,000 years ago. The range of accessible cognitive abilities is limited by the nature of archaeological remains, but evolutionary cognitive archaeologists have been able to trace developments in spatial cognition, memory, cognitive control, technical expertise, theory of mind, aesthetic cognition, symbolism, language, and numeracy.


2019 ◽  
Vol 5 (5) ◽  
pp. eaaw1268 ◽  
Author(s):  
Aida Gómez-Robles

The origin of Neanderthal and modern human lineages is a matter of intense debate. DNA analyses have generally indicated that both lineages diverged during the middle period of the Middle Pleistocene, an inferred time that has strongly influenced interpretations of the hominin fossil record. This divergence time, however, is not compatible with the anatomical and genetic Neanderthal affinities observed in Middle Pleistocene hominins from Sima de los Huesos (Spain), which are dated to 430 thousand years (ka) ago. Drawing on quantitative analyses of dental evolutionary rates and Bayesian analyses of hominin phylogenetic relationships, I show that any divergence time between Neanderthals and modern humans younger than 800 ka ago would have entailed unexpectedly rapid dental evolution in early Neanderthals from Sima de los Huesos. These results support a pre–800 ka last common ancestor for Neanderthals and modern humans unless hitherto unexplained mechanisms sped up dental evolution in early Neanderthals.


Sign in / Sign up

Export Citation Format

Share Document