scholarly journals Heritable variation in colour patterns mediating individual recognition

2017 ◽  
Vol 4 (2) ◽  
pp. 161008 ◽  
Author(s):  
Michael J. Sheehan ◽  
Juanita Choo ◽  
Elizabeth A. Tibbetts

Understanding the developmental and evolutionary processes that generate and maintain variation in natural populations remains a major challenge for modern biology. Populations of Polistes fuscatus paper wasps have highly variable colour patterns that mediate individual recognition. Previous experimental and comparative studies have provided evidence that colour pattern diversity is the result of selection for individuals to advertise their identity. Distinctive identity-signalling phenotypes facilitate recognition, which reduces aggression between familiar individuals in P. fuscatus wasps. Selection for identity signals may increase phenotypic diversity via two distinct modes of selection that have different effects on genetic diversity. Directional selection for increased plasticity would greatly increase phenotypic diversity but decrease genetic diversity at associated loci. Alternatively, heritable identity signals under balancing selection would maintain genetic diversity at associated loci. Here, we assess whether there is heritable variation underlying colour pattern diversity used for facial recognition in a wild population of P. fuscatus wasps. We find that colour patterns are heritable and not Mendelian, suggesting that multiple loci are involved. Additionally, patterns of genetic correlations among traits indicated that many of the loci underlying colour pattern variation are unlinked and independently segregating. Our results support a model where the benefits of being recognizable maintain genetic variation at multiple unlinked loci that code for phenotypic diversity used for recognition.

Author(s):  
Danika L. Bannasch ◽  
Christopher B. Kaelin ◽  
Anna Letko ◽  
Robert Loechel ◽  
Petra Hug ◽  
...  

AbstractDistinctive colour patterns in dogs are an integral component of canine diversity. Colour pattern differences are thought to have arisen from mutation and artificial selection during and after domestication from wolves but important gaps remain in understanding how these patterns evolved and are genetically controlled. In other mammals, variation at the ASIP gene controls both the temporal and spatial distribution of yellow and black pigments. Here, we identify independent regulatory modules for ventral and hair cycle ASIP expression, and we characterize their action and evolutionary origin. Structural variants define multiple alleles for each regulatory module and are combined in different ways to explain five distinctive dog colour patterns. Phylogenetic analysis reveals that the haplotype combination for one of these patterns is shared with Arctic white wolves and that its hair cycle-specific module probably originated from an extinct canid that diverged from grey wolves more than 2 million years ago. Natural selection for a lighter coat during the Pleistocene provided the genetic framework for widespread colour variation in dogs and wolves.


Genetics ◽  
1999 ◽  
Vol 151 (1) ◽  
pp. 15-30 ◽  
Author(s):  
Ing-Nang Wang ◽  
Daniel E Dykhuizen ◽  
Weigang Qiu ◽  
John J Dunn ◽  
Edward M Bosler ◽  
...  

Abstract The outer surface protein, OspC, is highly variable in Borrelia burgdorferi sensu stricto, the agent of Lyme disease. We have shown that even within a single population OspC is highly variable. The variation of ospA and ospC in the 40 infected deer ticks collected from a single site on Shelter Island, New York, was determined using PCR-SSCP. There is very strong apparent linkage disequilibrium between ospA and ospC alleles, even though they are located on separate plasmids. Thirteen discernible SSCP mobility classes for ospC were identified and the DNA sequence for each was determined. These sequences, combined with 40 GenBank sequences, allow us to define 19 major ospC groups. Sequences within a major ospC group are, on average, <1% different from each other, while sequences between major ospC groups are, on average, ∼20% different. The tick sample contains 11 major ospC groups, GenBank contains 16 groups, with 8 groups found in both samples. Thus, the ospC variation within a local population is almost as great as the variation of a similar-sized sample of the entire species. The Ewens-Watterson-Slatkin test of allele frequency showed significant deviation from the neutral expectation, indicating balancing selection for these major ospC groups. The variation represented by major ospC groups needs to be considered if the OspC protein is to be used as a serodiagnostic antigen or a vaccine.


2017 ◽  
Vol 4 (2) ◽  
pp. 160805 ◽  
Author(s):  
Yann X. C. Bourgeois ◽  
Boris Delahaie ◽  
Mathieu Gautier ◽  
Emeline Lhuillier ◽  
Pierre-Jean G. Malé ◽  
...  

Understanding the mechanisms responsible for phenotypic diversification within and among species ultimately rests with linking naturally occurring mutations to functionally and ecologically significant traits. Colour polymorphisms are of great interest in this context because discrete colour patterns within a population are often controlled by just a few genes in a common environment. We investigated how and why phenotypic diversity arose and persists in the Zosterops borbonicus white-eye of Reunion (Mascarene archipelago), a colour polymorphic songbird in which all highland populations contain individuals belonging to either a brown or a grey plumage morph. Using extensive phenotypic and genomic data, we demonstrate that this melanin-based colour polymorphism is controlled by a single locus on chromosome 1 with two large-effect alleles, which was not previously described as affecting hair or feather colour. Differences between colour morphs appear to rely upon complex cis -regulatory variation that either prevents the synthesis of pheomelanin in grey feathers, or increases its production in brown ones. We used coalescent analyses to show that, from a ‘brown’ ancestral population, the dominant ‘grey’ allele spread quickly once it arose from a new mutation. Since colour morphs are always found in mixture, this implies that the selected allele does not go to fixation, but instead reaches an intermediate frequency, as would be expected under balancing selection.


1989 ◽  
Vol 236 (1283) ◽  
pp. 163-185 ◽  

Heliconius warning colour is a good example of a genetic system shaped by strong selection. The genetics of colour patterns in interracial hybrid zones within both H. erato and H. melpomene was investigated. Within each species, the loci controlling these pattern differences are mostly homologous to those known from other races, but have somewhat different phenotypic effects. The precise genetic control varies geographically, even for nearly identical colour patterns. Independent evolution of the same pattern is unlikely; instead evolution of the genetic system is hypothesized to have occurred while stabilizing selection preserved the pattern itself. Single genes often control more than one pattern element. This apparent pleiotropy is in part due to tightly linked loci within 'supergenes': rare recombinants (possibly mutants) in genes controlling 'dennis' and 'ray' patterns were found in both species. However, supergenes, which are likely in polymorphic Batesian mimicry, are not expected to accumulate in Müllerian mimics because polymorphisms, which would favour their evolution, are too transient. The existence of supergenes in Heliconius suggests that major switch genes are gradually built up within a locus rather than evolving wholly by macromutation or by selection for tighter linkage of mimetic genes. This gradual evolution at a single locus might be necessitated by a lack of other sites that can control warning patterns. These genes are strongly epistatic, and heterozygotes and hybrid homozygotes have 'fuzzier' (less sharply defined) and more variable patterns than the pure races. The genetic system controlling colour pattern in Heliconius is clearly canalized and coadapted to produce efficient warning signals.


2020 ◽  
Author(s):  
Erika Páez V ◽  
Janne K. Valkonen ◽  
Keith R. Willmott ◽  
Pável Matos-Maraví ◽  
Marianne Elias ◽  
...  

ABSTRACTMost research on aposematism has focused on chemically defended prey, but signalling difficulty of capture remains poorly explored. Similarly to classical Batesian and Müllerian mimicry related to distastefulness, such “evasive aposematism” may also lead to convergence in warning colours, known as evasive mimicry. A prime candidate group for evasive mimicry are Adelpha butterflies, which are agile insects and show remarkable colour pattern convergence. We tested the ability of naïve blue tits to learn to avoid and generalise Adelpha wing patterns associated with difficulty of capture, and compared their response to that of birds that learned to associate the same wing patterns with distastefulness. Birds learned to avoid all wing patterns tested, but learning was faster with evasive prey compared with distasteful prey. Birds generalised their learned avoidance from evasive models to imperfect mimics if the mimic shared colours with the model. Despite imperfect mimics gaining protection from bird’s generalisation, perfect mimics always had the best fitness, supporting selection for accurate mimicry. Faster avoidance learning and broader generalisation of evasive prey suggest that being hard to catch may deter predators at least as effectively as distastefulness. Our results provide empirical evidence for a potentially widespread alternative scenario, evasive mimicry, for the evolution of similar aposematic colour patterns.


2019 ◽  
Vol 286 (1902) ◽  
pp. 20190435 ◽  
Author(s):  
M. J. Daniel ◽  
L. Koffinas ◽  
K. A. Hughes

Populations harbour enormous genetic diversity in ecologically important traits. Understanding the processes that maintain this variation is a long-standing challenge in evolutionary biology. Recent evidence indicates that a mating preference for novel sexual signals can be a powerful force maintaining genetic diversity. However, the proximate underpinnings of this preference, and its generality, remain unclear. Here, we test the hypothesis that preference for novel sexual signals is underpinned by habituation, a nearly ubiquitous form of learning whereby individuals become less responsive to repetitive stimuli. We use the Trinidadian guppy ( Poecilia reticulata ), in which male colour patterns are diverse yet heritable. We show that repeated exposure to males with a given colour pattern reduces female interest in males with that pattern, and that interest recovers following brief isolation. These results fulfil two core criteria of habituation: responsiveness decline and spontaneous recovery. To distinguish habituation from sensory adaptation and fatigue, we also demonstrate stimulus specificity and dishabituation. These results provide the first evidence that habituation causes a preference for novel sexual signals, addressing the mechanistic underpinnings of this mating preference. Given the pervasiveness of habituation among taxa and sensory contexts, our findings suggest that preference for novelty may play an underappreciated role in mate choice and the maintenance of genetic variation.


2017 ◽  
Vol 284 (1855) ◽  
pp. 20170744 ◽  
Author(s):  
Keith R. Willmott ◽  
Julia C. Robinson Willmott ◽  
Marianne Elias ◽  
Chris D. Jiggins

Mimicry is one of the best-studied examples of adaptation, and recent studies have provided new insights into the role of mimicry in speciation and diversification. Classical Müllerian mimicry theory predicts convergence in warning signal among protected species, yet tropical butterflies are exuberantly diverse in warning colour patterns, even within communities. We tested the hypothesis that microhabitat partitioning in aposematic butterflies and insectivorous birds can lead to selection for different colour patterns in different microhabitats and thus help maintain mimicry diversity. We measured distribution across flight height and topography for 64 species of clearwing butterflies (Ithomiini) and their co-mimics, and 127 species of insectivorous birds, in an Amazon rainforest community. For the majority of bird species, estimated encounter rates were non-random for the two most abundant mimicry rings. Furthermore, most butterfly species in these two mimicry rings displayed the warning colour pattern predicted to be optimal for anti-predator defence in their preferred microhabitats. These conclusions were supported by a field trial using butterfly specimens, which showed significantly different predation rates on colour patterns in two microhabitats. We therefore provide the first direct evidence to support the hypothesis that different mimicry patterns can represent stable, community-level adaptations to differing biotic environments.


2017 ◽  
Author(s):  
Gregor Gorjanc ◽  
R. Chris Gaynor ◽  
John M. Hickey

AbstractThis study evaluates optimal cross selection for balancing selection and maintenance of genetic diversity in two-part plant breeding programs with rapid recurrent genomic selection. The two-part program reorganizes a conventional breeding program into population improvement component with recurrent genomic selection to increase the mean of germplasm and product development component with standard methods to develop new lines. Rapid recurrent genomic selection has a large potential, but is challenging due to genotyping costs or genetic drift. Here we simulate a wheat breeding program for 20 years and compare optimal cross selection against truncation selection in the population improvement with one to six cycles per year. With truncation selection we crossed a small or a large number of parents. With optimal cross selection we jointly optimised selection, maintenance of genetic diversity, and cross allocation with AlphaMate program. The results show that the two-part program with optimal cross selection delivered the largest genetic gain that increased with the increasing number of cycles. With four cycles per year optimal cross selection had 78% (15%) higher long-term genetic gain than truncation selection with a small (large) number of parents. Higher genetic gain was achieved through higher efficiency of converting genetic diversity into genetic gain; optimal cross selection quadrupled (doubled) efficiency of truncation selection with a small (large) number of parents. Optimal cross selection also reduced the drop of genomic selection accuracy due to the drift between training and prediction populations. In conclusion, optimal cross-selection enables optimal management and exploitation of population improvement germplasm in two-part programs.Key messageOptimal cross selection increases long-term genetic gain of two-part programs with rapid recurrent genomic selection. It achieves this by optimising efficiency of converting genetic diversity into genetic gain through reducing the loss of genetic diversity and reducing the drop of genomic prediction accuracy with rapid cycling.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 18-18
Author(s):  
Leticia P Sanglard ◽  
Felipe Hickmann ◽  
Yijian Huang ◽  
Kent A Gray ◽  
Daniel Linhares ◽  
...  

Abstract Immunoglobulin G antibody response, measured as sample-to-positive (S/P) ratio, to Porcine Reproductive and Respiratory Syndrome virus (PRRSV) has been proposed as an indicator trait for improved reproductive performance in PRRSV-infected purebred sows and PRRSV-vaccinated crossbred gilts. In this study, we investigated the genetic correlations (rg) of S/P ratio following a PRRSV outbreak and PRRSV-vaccination with performance in non-exposed and PRRSV-exposed sows. PRRSV outbreak phase was defined based on previously described methodologies after the detection of typical clinical signs of PRRSV infection. 541 Landrace sows had S/P ratio measured at ~54 days after the beginning of the PRRSV outbreak (S/Poutbreak), and 906 Landrace x Large White naïve F1 gilts had S/P ratio measured at ~50 days after vaccination with a commercial modified live PRRSV vaccine (S/PVx). 711 and 428 Landrace sows had reproductive performance recorded before and during the PRRSV outbreak, respectively. 811 vaccinated F1 animals had farrowing performance for up to 3 parities. All animals were genotyped for ~28K SNPs. The estimate of rg of S/Poutbreakwith S/PVx was high (rg±SE = 0.72±0.18). Estimates of rg of S/Poutbreak with reproductive performance in F1 sows were low to moderate, ranging from 0.05±0.23 (number stillborn) to 0.30±0.20 (total number born). Estimates of rg of S/PVxwith reproductive performance in non-infected purebred sows were moderate and favorable with number born alive (0.50±0.23), but low (0 to -0.11±0.23) with litter mortality traits. Estimates of rg of S/PVx were moderate and negative (-0.47±0.18) with the number of mummies in PRRSV-infected purebred sows and low with other traits (-0.29±0.18 for total number born to 0.05±0.18 for number stillborn). These results indicate that selection for antibody response following a PRRSV outbreak collected in purebred sows and to PRRSV vaccination collected in commercial crossbred gilts may increase litter size of non-infected and PRRSV-exposed purebred and commercial crossbred sows.


1994 ◽  
Vol 59 (2) ◽  
pp. 263-269 ◽  
Author(s):  
N. D. Cameron ◽  
M. K. Curran

AbstractResponses to divergent selection for lean growth rate with ad-libitum feeding (LGA), for lean food conversion (LFC) and for daily food intake (DFI) in Landrace pigs were studied. Selection was practised for four generations with a generation interval ofl year. A total of 2642 pigs were performance tested in the high, low and control lines, with an average of 37 boars and 39 gilts performance tested per selection line in each generation. The average within-line inbreeding coefficient at generation four was equal to 0·04. There was one control line for the DFI and LFC selection groups and another control line for the LGA selection group. Animals were performance tested in individual pens with mean starting and finishing weights of 30 kg and 85 kg respectively with ad-libitum feeding. The selection criteria had phenotypic s.d. of 32, 29 and 274 units, for LGA, LFC and DFI, respectively, and results are presented in phenotypic s.d.Cumulative selection differentials (CSD) were 5·1, 4·5 and 5·5 phenotypic s.d. for LGA, LFC and DFI, respectively. Direct responses to selection were 1·4,1·1 and 0·9 (s.e. 0·20) for LGA, LFC and DFI. In each of the three selection groups, the CSD and direct responses to selection were symmetric about the control lines. The correlated response in LFC (1·1, s.e. 0·19) with selection on LGA was equal to the direct response in LFC. In contrast, the direct response in LGA was greater than the correlated response (0·7, s.e. 0·18) with selection on LFC. There was a negative correlated response in DFI (-0·6, s.e. 0·18) with selection on LFC, but the response with selection on LGA was not significant (0·2, s.e. 0·16).Heritabilities for LGA, LFC and DFI ivere 0·25, 0·25 and 0·18 (s.e. 0·03), when estimated by residual maximum likelihood, with common environmental effects of 0·12 (s.e. 0·02). Genetic correlations for LFC with LGA and DFI were respectively positive (0·87, s.e. 0·02) and negative (-0·36, s.e. 0·09), while the genetic correlation between DFI and LGA was not statistically different from zero, 0·13 (s.e. 0·10). Selection on components of efficient lean growth has identified LGA as an effective selection objective for improving both LGA and LFC, without a reduction in DFI.


Sign in / Sign up

Export Citation Format

Share Document