scholarly journals Development of cyclic shedding teeth from semi-shedding teeth: the inner dental arcade of the stem osteichthyan Lophosteus

2017 ◽  
Vol 4 (5) ◽  
pp. 161084 ◽  
Author(s):  
Donglei Chen ◽  
Henning Blom ◽  
Sophie Sanchez ◽  
Paul Tafforeau ◽  
Tiiu Märss ◽  
...  

The numerous cushion-shaped tooth-bearing plates attributed to the stem group osteichthyan Lophosteus superbus , which are argued here to represent an early form of the osteichthyan inner dental arcade, display a previously unknown and presumably primitive mode of tooth shedding by basal hard tissue resorption. They carry regularly spaced, recumbent, gently recurved teeth arranged in transverse tooth files that diverge towards the lingual margin of the cushion. Three-dimensional reconstruction from propagation phase-contrast synchrotron microtomography (PPC-SRµCT) reveals remnants of the first-generation teeth embedded in the basal plate, a feature never previously observed in any taxon. These teeth were shed by semi-basal resorption with the periphery of their bases retained as dentine rings. The rings are highly overlapped, which evidences tooth shedding prior to adding the next first-generation tooth at the growing edge of the plate. The first generation of teeth is thus diachronous. Successor teeth at the same sites underwent cyclical replacing and shedding through basal resorption, producing stacks of buried resorption surfaces separated by bone of attachment. The number and spatial arrangement of resorption surfaces elucidates that basal resorption of replacement teeth had taken place at the older tooth sites before the addition of the youngest first-generation teeth at the lingual margin. Thus, the replacement tooth buds cannot have been generated by a single permanent dental lamina at the lingual edge of the tooth cushion, but must have arisen either from successional dental laminae associated with the individual predecessor teeth, or directly from the dental epithelium of these teeth. The virtual histological dissection of these Late Silurian microfossils broadens our understanding of the development of the gnathostome dental systems and the acquisition of the osteichthyan-type of tooth replacement.

Author(s):  
B. Carragher ◽  
M. Whittaker

Techniques for three-dimensional reconstruction of macromolecular complexes from electron micrographs have been successfully used for many years. These include methods which take advantage of the natural symmetry properties of the structure (for example helical or icosahedral) as well as those that use single axis or other tilting geometries to reconstruct from a set of projection images. These techniques have traditionally relied on a very experienced operator to manually perform the often numerous and time consuming steps required to obtain the final reconstruction. While the guidance and oversight of an experienced and critical operator will always be an essential component of these techniques, recent advances in computer technology, microprocessor controlled microscopes and the availability of high quality CCD cameras have provided the means to automate many of the individual steps.During the acquisition of data automation provides benefits not only in terms of convenience and time saving but also in circumstances where manual procedures limit the quality of the final reconstruction.


2013 ◽  
Vol 5 ◽  
pp. JCNSD.S11106 ◽  
Author(s):  
Jarle Sundseth ◽  
Jon Berg-Johnsen

Cranial defects can be caused by injury, infection, or tumor invasion. Large defects should be reconstructed to protect the brain and normalize the cerebral hemodynamics. The conventional method is to cover the defect with bone cement. Custom-made implants designed for the individual patient are now available. We report our experience with one such product in patients with large cranial defects (>7.6 cm in diameter). A CT scan with 2 mm slices and a three-dimensional reconstruction were obtained from the patient. This information was dispatched to the company and used as a template to form the implant. The cranial implant was received within four weeks. From 2005 to 2010, custom-made cranial implants were used in 13 patients with large cranial defects. In 10 of the 13 patients, secondary deep infection was the cause of the cranial defect. All the implants fitted well or very well to the defect. No infections were seen after implantation; however, one patient was reoperated on for an epidural hematoma. A custom-made cranial implant is considerably more expensive than an implant made of bone cement, but ensures that the defect is optimally covered. The use of custom-made implants is straightforward and timesaving, and they provide an excellent medical and cosmetic result.


2014 ◽  
Vol 281 (1782) ◽  
pp. 20140299 ◽  
Author(s):  
S. Sanchez ◽  
P. Tafforeau ◽  
P. E. Ahlberg

Because of its close relationship to tetrapods, Eusthenopteron is an important taxon for understanding the establishment of the tetrapod body plan. Notably, it is one of the earliest sarcopterygians in which the humerus of the pectoral fin skeleton is preserved. The microanatomical and histological organization of this humerus provides important data for understanding the evolutionary steps that built up the distinctive architecture of tetrapod limb bones. Previous histological studies showed that Eusthenopteron 's long-bone organization was established through typical tetrapod ossification modalities. Based on a three-dimensional reconstruction of the inner microstructure of Eusthenopteron 's humerus, obtained from propagation phase-contrast X-ray synchrotron microtomography, we are now able to show that, despite ossification mechanisms and growth patterns similar to those of tetrapods, it also retains plesiomorphic characters such as a large medullary cavity, partly resulting from the perichondral ossification around a large cartilaginous bud as in actinopterygians. It also exhibits a distinctive tubular organization of bone-marrow processes. The connection between these processes and epiphyseal structures highlights their close functional relationship, suggesting that either bone marrow played a crucial role in the long-bone elongation processes or that trabecular bone resulting from the erosion of hypertrophied cartilage created a microenvironment for haematopoietic stem cell niches.


2019 ◽  
Vol 5 (2) ◽  
pp. 28 ◽  
Author(s):  
Michael Himpel ◽  
André Melzer

In dusty plasmas, determining the three-dimensional particle positions and trajectories of individual particles is often required. This paper benchmarks two approaches capable of reconstructing the trajectories of particles in three dimensions. The influences of the particle number, the particle number density, and the orientation of the individual cameras are studied. Additionally, the demands on the desired image quality, required for these algorithms, are discussed. The reader is given practical information for the appropriate reconstruction approach and camera positioning that should/could be used in a specific application.


2011 ◽  
Vol 76 (2) ◽  
pp. 109-118 ◽  
Author(s):  
Wojciech Borucki

Vacuoles play very important physiological roles in plant cells. Pea root nodules, which exhibit distinct zonation (meristematic zone and central tissue zones), may serve as a good experimental model for the investigations of vacuole development and its importance to cell and tissue functioning. Moreover, the nodule central tissue is composed of both infected and uninfected cells which play different physiological roles and differ in the level of vacuolation. Cytological observations revealed that central vacuoles of the infected cells of the effective nodules expand toward cell walls. Thus only thin layers of the cytoplasm separate each central vacuole from plasma membrane and cell wall. This finding is discussed from the viewpoint of improved exchange of solutes and water between the central vacuole and apoplast of the infected cell. Three-dimensional reconstruction of the vacuoles of infected cells within a fragment of effective nodule central tissue, showed their spatial arrangement. Possible advantages coming from the spatial arrangement of vacuoles within the central tissue are discussed. A comparative study of the central tissue (bacteroidal tissue) and meristem vacuolation of the effective and ineffective pea root nodules is also presented. Morphometric measurements revealed that the effective nodule central tissue was more vacuolated than the ineffective one. It was proved that maturation of the infected cells involves dynamic changes in their vacuolation. Having numerous fixing nitrogen bacteroids, the infected cells of effective central tissue were less vacuolated than uninfected cells. On the other hand, both infected and uninfected cells of the effective central tissue showed a much higher level of vacuolation in nitrogen-fixing zone than cells of the same type in ineffective tissue. These results indicate that vacuolation is an important factor in development and functioning of pea root nodule central tissue.


Author(s):  
Bruce F. McEwen ◽  
Joachim Frank

Electron Tomography has recently emerged as an effective tool for three-dimensional (3D) ultrastructural analysis, particularly when combined with Intermediate or High Voltage Electron Microscopy (IVEM and HVEM) (reviewed in 1-3). In this approach a tilt series is recorded over a large angular range, up to 180°, typically with an angular interval of 2-5°. The individual images are digitized, rotationally and translationally aligned, the image density normalized, and finally the 3D reconstruction computed. After low pass filtration to the limiting resolution, the reconstruction volume can be examined by a growing number of computer graphic tools. The chief advantages of tomography are that: 1) the reconstruction is an objectively determined, uninterrupted 3D density map of the specimen, as seen in the electron microscope; and 2) the method is generally applicable to any sample which is sufficiently contrasted or isolated from its surrounding environment.


Author(s):  
M. Boublik ◽  
W. Hellmann ◽  
F. Jenkins

The present knowledge of the three-dimensional structure of ribosomes is far too limited to enable a complete understanding of the various roles which ribosomes play in protein biosynthesis. The spatial arrangement of proteins and ribonuclec acids in ribosomes can be analysed in many ways. Determination of binding sites for individual proteins on ribonuclec acid and locations of the mutual positions of proteins on the ribosome using labeling with fluorescent dyes, cross-linking reagents, neutron-diffraction or antibodies against ribosomal proteins seem to be most successful approaches. Structure and function of ribosomes can be correlated be depleting the complete ribosomes of some proteins to the functionally inactive core and by subsequent partial reconstitution in order to regain active ribosomal particles.


Author(s):  
G. Stöffler ◽  
R.W. Bald ◽  
J. Dieckhoff ◽  
H. Eckhard ◽  
R. Lührmann ◽  
...  

A central step towards an understanding of the structure and function of the Escherichia coli ribosome, a large multicomponent assembly, is the elucidation of the spatial arrangement of its 54 proteins and its three rRNA molecules. The structural organization of ribosomal components has been investigated by a number of experimental approaches. Specific antibodies directed against each of the 54 ribosomal proteins of Escherichia coli have been performed to examine antibody-subunit complexes by electron microscopy. The position of the bound antibody, specific for a particular protein, can be determined; it indicates the location of the corresponding protein on the ribosomal surface.The three-dimensional distribution of each of the 21 small subunit proteins on the ribosomal surface has been determined by immuno electron microscopy: the 21 proteins have been found exposed with altogether 43 antibody binding sites. Each one of 12 proteins showed antibody binding at remote positions on the subunit surface, indicating highly extended conformations of the proteins concerned within the 30S ribosomal subunit; the remaining proteins are, however, not necessarily globular in shape (Fig. 1).


Author(s):  
Robert Glaeser ◽  
Thomas Bauer ◽  
David Grano

In transmission electron microscopy, the 3-dimensional structure of an object is usually obtained in one of two ways. For objects which can be included in one specimen, as for example with elements included in freeze- dried whole mounts and examined with a high voltage microscope, stereo pairs can be obtained which exhibit the 3-D structure of the element. For objects which can not be included in one specimen, the 3-D shape is obtained by reconstruction from serial sections. However, without stereo imagery, only detail which remains constant within the thickness of the section can be used in the reconstruction; consequently, the choice is between a low resolution reconstruction using a few thick sections and a better resolution reconstruction using many thin sections, generally a tedious chore. This paper describes an approach to 3-D reconstruction which uses stereo images of serial thick sections to reconstruct an object including detail which changes within the depth of an individual thick section.


Author(s):  
S. Cusack ◽  
J.-C. Jésior

Three-dimensional reconstruction techniques using electron microscopy have been principally developed for application to 2-D arrays (i.e. monolayers) of biological molecules and symmetrical single particles (e.g. helical viruses). However many biological molecules that crystallise form multilayered microcrystals which are unsuitable for study by either the standard methods of 3-D reconstruction or, because of their size, by X-ray crystallography. The grid sectioning technique enables a number of different projections of such microcrystals to be obtained in well defined directions (e.g. parallel to crystal axes) and poses the problem of how best these projections can be used to reconstruct the packing and shape of the molecules forming the microcrystal.Given sufficient projections there may be enough information to do a crystallographic reconstruction in Fourier space. We however have considered the situation where only a limited number of projections are available, as for example in the case of catalase platelets where three orthogonal and two diagonal projections have been obtained (Fig. 1).


Sign in / Sign up

Export Citation Format

Share Document