scholarly journals Effect of polyamide 6 on the morphology and electrical conductivity of carbon black-filled polypropylene composites

2017 ◽  
Vol 4 (12) ◽  
pp. 170769 ◽  
Author(s):  
Xuewei Zhang ◽  
Jiang Liu ◽  
Yi Wang ◽  
Wei Wu

Carbon black (CB)-filled polypropylene (PP) with surface resistivity between 10 6 and 10 9  Ω sq −1 is the ideal antistatic plastic material in the electronics and electric industry. However, a large amount of CB may have an adverse effect on the mechanical properties and processing performance of the material, thus an improved ternary system is developed. Blends of CB-filled PP and polyamide 6 (PA6) have been prepared by melt blending in order to obtain electrically conductive polymer composites with a low electrical percolation threshold based on the concept of double percolation. The morphological developments of these composites were studied by scanning electron microscopy. The results showed that CB particles were selectively dispersed in PA6 phases due to the good interaction and interfacial adhesion between CB and PA6. At the same CB loadings, the surface resistivity of PP/PA6/CB composite was smaller than that of PP/CB composite system, which indicated the better conductivity in the former composite. The increasing amount of PA6 in the composites changed the morphology from a typical sea–island morphology to a co-continuous morphology. What is more, with 8 wt% of CB and PP/PA6 phase ratio of 70/30 in which the PP and PA6 phases formed a co-continuous structure, the electrical conductivity of the composite peaked at 2.01 × 10 5  Ω sq −1 .

2021 ◽  
pp. 096739112110012
Author(s):  
Qingsen Gao ◽  
Jingguang Liu ◽  
Xianhu Liu

The effect of annealing on the electrical and rheological properties of polymer (poly (methyl methacrylate) (PMMA) and polystyrene (PS)) composites filled with carbon black (CB) was investigated. For a composite with CB content near the electrical percolation threshold, the formation of conductive pathways during annealing has a significant impact on electrical conductivity, complex viscosity, storage modulus and loss modulus. For the annealed samples, a reduction in the electrical and rheological percolation threshold was observed. Moreover, a simple model is proposed to explain these behaviors. This finding emphasizes the differences in network formation with respect to electrical or rheological properties as both properties belong to different physical origins.


2017 ◽  
Vol 52 (11) ◽  
pp. 1495-1503 ◽  
Author(s):  
K Hamdi ◽  
Z Aboura ◽  
W Harizi ◽  
K Khellil

This work tends to characterize the effect of carbon black nanofillers on the properties of the woven carbon fiber reinforced thermoplastic polymers. First of all, composites from nanofilled Polyamide 6 resin reinforced by carbon fibers were fabricated. Scanning electron microscopy observations were performed to localize the nanoparticles and showed that particles penetrated the fiber zone. In fact, by reaching this zone, the carbon black nanofillers create a connectivity's network between fibers, which produces an easy pathway for the electrical current. It explains the noticed improvement of the electrical conductivity of the carbon black nanofilled composites. Electrical conductivity of neat matrix composite passed from 20 to 80 S/cm by adding 8 wt% of carbon black and to 140 S/cm by adding 16 wt% of the same nanofiller. The addition of nanofillers modifies the heating and cooling laws of carbon fiber reinforced polymer: the nanofilled carbon fiber reinforced polymer with 16 wt% is the most conductive so it heats less. Based on these results, the use of the composite itself as an indicator of this mechanical state might be possible. In fact, the study of the influence of a mechanical loading on the electrical properties of the composite by recording the variance of an electrical set is possible.


2014 ◽  
Vol 53 (6) ◽  
pp. 2270-2276 ◽  
Author(s):  
Juan Hu ◽  
Hao-Bin Zhang ◽  
Song Hong ◽  
Zhi-Guo Jiang ◽  
Chenxi Gui ◽  
...  

Author(s):  
Xiaolong Gao ◽  
Yao Huang ◽  
Xiaoxiang He ◽  
Xiaojing Fan ◽  
Ying Liu ◽  
...  

Electrically conductive polymer composites are in high demand for modern technologies, however, the intrinsic brittleness of conducting conjugated polymers and the moderate electrical conductivity of engineering polymer/carbon composites have highly constrained their applications. In this work, super high electrical conductive polymer composites were produced by a novel hot embossing design. The polydimethylsiloxane (PDMS) composites containing short carbon fiber (SCF) exhibited an electrical percolation threshold at 0.45 wt%, and reached a saturated electrical conductivity of 49 S/m at 8 wt% of SCF. When reduced the sample thickness from 1.0 mm to 0.1 mm by the hot embossing process, a compression-induced percolation threshold occurred at 0.3 wt%, while the electrical conductivity was further enhanced to 378 S/m at 8 wt% SCF. Furthermore, the additional of a second nanofiller of 1 wt%, such as carbon nanotube or conducting carbon black further increased the electrical conductivity of the PDMS/SCF (8 wt%) composites to 909 S/m and 657 S/m, respectively. The synergy of the densified conducting filler network by the mechanical compression and the hierarchical micro-/nanoscale filler approach has realize super high electrical conductive yet mechanical flexible polymer composites for modern flexible electronics applications.


2020 ◽  
Vol 831 ◽  
pp. 151-155
Author(s):  
Yogi Angga Swasono

An effort to improve electrical property of Polypropylene (PP)/Clay nanocomposite was conducted. Carbon black (CB) was introduced into PP/Clay to enhance that property as required for conductive polymer composites (CPCs) application. The compositions of CB on PP/Clay were varied at 3, 5, and 7 percent hundred resin (phr). In this research, all composites were prepared by melt mixing using an internal mixer at 222 °C, 83 rpm, and 10 minutes. A compatibilizer, PP-grafted-Maleic Anhydride (PP-g-MA), was used to facilitate dispersion of clay layers and CB particles on PP matrix. The electrical property of composite was evaluated from their surface resistivity using insulation tester. Meantime thermal-oxidative stability property was analyzed from oxidative induction time (OIT) data using Differential Scanning Calorimetry (DSC) instrument. The presence of CB dramatically decreased surface resistivity of PP/Clay from 6.98 x 1013 ohm to 7.35 x 106 ohm by adding CB 7 phr. OIT of PP/Clay dropped 155% compare with neat PP. On the other hand, the addition of CB 7 phr into PP/Clay improved OIT of PP/Clay up to 22 %. The interlayer structure of clay was investigated using X-ray Diffraction (XRD) to find out the synergistic effect between clay and CB. Actually, clay interlayer spacing did not change due to the addition of CB.


2018 ◽  
Vol 248 ◽  
pp. 01012 ◽  
Author(s):  
Nabilah Afiqah Mohd Radzuan ◽  
Abu Bakar Sulong ◽  
Mahendra Rao Somalu

A polypropylene (PP) reinforced milled carbon fibre (MCF) was developed to produce high conductive polymer composites. Theoretically, by altering the filler orientation, the electrical conductivity and mechanical properties can be controlled. However, the orientation techniques which influence the MCF fibre are difficult to performed. Therefore, this study focused on controlling the filler orientation through the extrusion process. Hence, the extrusion temperature of 230°C and rotational speed of 50 rpm at 70 wt.% of MCF and 30 wt.% of PP were used. The electrical conductivity in perpendicular to the extrusion direction was higher at 2.0 S/cm as compared to 0.66 S/cm in the parallel direction. Besides, the extruded composite of rod and sheet were studied in which rod dies offers higher electrical conductivity of 3.0 S/cm and better mechanical properties of 1225 MPa than the sheet dies. Alteration in filler orientation aid in enhancing the electrical conductivity as minimum fillers breakage occurred due to the low shear rate of 2.2 s-1 which indirectly induces the filler to the desired orientation. Therefore, the extrusion process able to improve the electrical conductivity and mechanical properties of composite materials, as the filler oriented perpendicular to extrusion direction.


2019 ◽  
Vol 39 (9) ◽  
pp. 813-821 ◽  
Author(s):  
Xuewei Zhang ◽  
Renbo Ma ◽  
Jiang Liu ◽  
Wei Wu

Abstract The objective of this study is to investigate the electrically conductive properties and percolation thresholds of carbon black (CB)-filled polypropylene (PP)/glass fiber (GF), PP/polyamide 6 (PA6), and PP/PA6/GF composites. Compared to CB-filled PP/GF and PP/PA6 composites, PP/PA6/GF/CB composites exhibited a reduction of the percolation threshold. Under the same CB loading, the surface resistivity of PP/PA6/GF/CB composites was much lower, indicating a better conductivity. According to the morphology images characterized by transmission electron microscopy, CB was preferentially located in the PA6 phase due to the good interaction between CB and PA6 and the lower viscosity of PA6. The addition of GF formed a PA6-coated GF structure. This structure with a relatively long diameter can effectively assist the construction of conductive paths. Meanwhile, GF also played a volume-occupying role and improved the effective concentration of the conductive component in the system. The influences of GF and PA6 mass fraction on the surface resistivity of PP/PA6/GF/CB composites were also explored, respectively. It was found that appropriate amounts of GF and PA6 could effectively increase the electrical conductivity, providing guidance for fabricating an antistatic or conductive material with high comprehensive performance.


Polymer ◽  
2012 ◽  
Vol 53 (7) ◽  
pp. 1602-1610 ◽  
Author(s):  
Ming Wen ◽  
Xiaojie Sun ◽  
Lin Su ◽  
Jiabin Shen ◽  
Jiang Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document