scholarly journals Adsorptive removal of adsorbable organic halogens by activated carbon

2018 ◽  
Vol 5 (12) ◽  
pp. 181507 ◽  
Author(s):  
Chengrong Qin ◽  
Baojie Liu ◽  
Lingzhi Huang ◽  
Chen Liang ◽  
Cong Gao ◽  
...  

Current research mainly focuses on the reduction of adsorbable organic halogen (AOX) sources, while studies on AOX monitoring and management in the environment are scarce. Organic pollutants in water are mainly fixed by sediments. Thus, in this paper, activated carbon was used to simulate the adsorption of AOX by sediments. AOX volatilization and degradation were also studied to exclude their effect on adsorption. Micromolecule chlorides were more easily volatilized and degraded than chlorobenzene and chlorophenol. The adsorption of activated carbon to AOX in bleaching wastewater was also studied and the optimum conditions for AOX removal were elucidated (particle size, 62 µm; time, 120 min; pH, 2.5; temperature, 40°C; and activated carbon dosage, 1.75 g l −1 ). AOX adsorption by activated carbon is a chemical process. Hence, the chemical compositions of the bleaching effluent with and without adsorption were analysed by GC-MS. The results revealed that activated carbon exhibits a good AOX removal effect, thereby providing a theoretical basis for monitoring the AOX distribution in the environment.

2012 ◽  
Vol 27 (4) ◽  
pp. 707-713 ◽  
Author(s):  
Jukka Pekka lsoaho ◽  
Suvi Tarkkanen ◽  
Raimo Alen ◽  
Juha Fiskari

Abstract Softwood-based kraft mill bleaching effluents from the initial bleaching stages D0 and E1 (the bleaching sequence being D0E 1D 1 E2D2) were treated by the oxidative Fenton method (H20rFeS04) to decompose organic pollutants contammg adsorbable organic halogens (AOX). Experiments designed using the Taguchi method were applied to predict the process conditions that would result in a cost-effective and adequate removal of AOX. In addition to the composition and concentration of the reagents (H202 and Fe2+), the main process parameters selected were temperature and reaction time, while pH was adj usted to an approximate value of 4 (the volumetric ratio of the mixed effluents D0:E 1 was 3 :2). The results indicated that an AOX removal of about 70% for this mixture ( corresponding to about 50% for the mill) was achieved when the eftluent samples were treated for 60 min at 70°C with H202 and Fe2+ at a concentration of 1 600 mg/1 and 28 mg/1, respectively.


1999 ◽  
Vol 40 (9) ◽  
pp. 249-256 ◽  
Author(s):  
R. Vahala ◽  
V.-A. Långvik ◽  
R. Laukkanen

A pilot plant study in four parallel filter runs was performed in order to determine the effect of ozonation and two-step granular activated carbon (GAC) filtration on the removal of disinfection by-product (DBP) precursors. The results showed that ozonation significantly decreased the adsorbable organic halogens (AOX) (35%), simulated distribution system (SDS) AOX (37%) and SDS trihalomethanes (THM) (76%) from chemically treated and sand-filtered lake water, but did not decrease either short-term or the long-term chlorine demand. Biofiltration with exhausted GAC had a minor importance in the precursor removal (0-20%). The performance of adsorptive GAC filtration was strongly dependent on the age of the GAC filter bed, which was also seen as a strong correlation between the natural organic matter (NOM) measurements and DBP formation potential. Disinfection with chloramine produced lower THM, AOX, mutagenicity and MX (Z-3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone) levels compared to chlorine disinfection.


2015 ◽  
Vol 16 (2) ◽  
pp. 333-346 ◽  
Author(s):  
Sabrina Sorlini ◽  
Michela Biasibetti ◽  
Francesca Gialdini ◽  
Maria Cristina Collivignarelli

In this study water samples of different origins (subalpine lake, artificial lake and river) were treated by pre-oxidation, coagulation/flocculation, adsorption on granular activated carbon and disinfection. Different laboratory-scale tests were carried out to evaluate the treatment impact on ClO2 consumption in disinfection and on the formation of disinfection by-products (trihalomethanes, adsorbable organic halogen, chlorite and chlorate). The results showed that coagulation/flocculation and activated carbon adsorption have the most significant impact on reducing disinfectant consumption. Pre-oxidation of artificial lake water with KMnO4 and NaClO determines the highest ClO2 consumption. Regardless of the water source, the amount of chlorite produced after disinfection with ClO2 is 40–60% lower using NaClO as the pre-oxidant rather than KMnO4 or ClO2. Otherwise, NaClO leads to a high formation of adsorbable organic halogens and trihalomethanes in artificial lake water (up to 60 μg/L and 20 μg/L respectively), while in the case of ClO2 oxidation, trihalomethane formation is 98% less compared to NaClO. Further, adding ferrous ion in coagulation/flocculation improves the removal of chlorite produced during pre-oxidation, with a 90% removal, mainly due to the reduction of chlorite to chloride. Finally, activated carbon adsorption after pre-oxidation and coagulation/flocculation removes adsorbable organic halogens and trihalomethanes respectively by 50–60% and 30–98%, and completes the chlorite and chlorate removal.


1997 ◽  
Vol 35 (2-3) ◽  
pp. 85-91
Author(s):  
D. A. Barton ◽  
J. D. Woodruff ◽  
T. M. Bousquet ◽  
A. M. Parrish

If promulgated as proposed, effluent guidelines for the U.S. pulp and paper industry will impose average monthly and maximum daily numerical limits of discharged AOX (adsorbable organic halogen). At this time, it is unclear whether the maximum-day variability factor used to establish the proposed effluent guidelines will provide sufficient margin for mills to achieve compliance during periods of normal but variable operating conditions within the pulping and bleaching processes. Consequently, additional information is needed to relate transient AOX loadings with final AOX discharges. This paper presents a simplistic dynamic model of AOX decay during treatment. The model consists of hydraulic characterization of an activated sludge process and a first-order decay coefficient for AOX removal. Data for model development were acquired by frequent collection of influent and effluent samples at a bleach kraft mill during a bleach plant shutdown and startup sequence.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 287
Author(s):  
Luciana S. Rocha ◽  
Érika M. L. Sousa ◽  
María V. Gil ◽  
João A. B. P. Oliveira ◽  
Marta Otero ◽  
...  

In view of a simple after-use separation, the potentiality of producing magnetic activated carbon (MAC) by intercalation of ferromagnetic metal oxide nanoparticles in the framework of a powder activated carbon (PAC) produced from primary paper sludge was explored in this work. The synthesis conditions to produce cost effective and efficient MACs for the adsorptive removal of pharmaceuticals (amoxicillin, carbamazepine, and diclofenac) from aqueous media were evaluated. For this purpose, a fractional factorial design (FFD) was applied to assess the effect of the most significant variables (Fe3+ to Fe2+ salts ratio, PAC to iron salts ratio, temperature, and pH), on the following responses concerning the resulting MACs: Specific surface area (SBET), saturation magnetization (Ms), and adsorption percentage of amoxicillin, carbamazepine, and diclofenac. The statistical analysis revealed that the PAC to iron salts mass ratio was the main factor affecting the considered responses. A quadratic linear regression model A = f(SBET, Ms) was adjusted to the FFD data, allowing to differentiate four of the eighteen MACs produced. These MACs were distinguished by being easily recovered from aqueous phase using a permanent magnet (Ms of 22–27 emu g−1), and their high SBET (741–795 m2 g−1) were responsible for individual adsorption percentages ranging between 61% and 84% using small MAC doses (35 mg L−1).


2012 ◽  
Vol 184-185 ◽  
pp. 1110-1113 ◽  
Author(s):  
Li Fen He ◽  
Qi Xia Liu ◽  
Tao Ji ◽  
Qiang Gao

Various jute-based activated carbon fibers were prepared by using jute fibers as raw materials and phosphoric acid as activating agent. The effects of three main factors such as concentration of activating agent, activation temperature and activation time on the yield and adsorptive properties of active carbon fibers were investigated via orthogonal experiments. The surface physical morphology of jute-based activated carbon fiber was also observed by using Scanning Electron Microscope. Results showed that the optimum conditions were phosphoric acid concentration of 4 mol/L, activation temperature of 600 °C and activation time of 1h. The yield, iodine number and amount of methylene blue adsorption of the active carbon fiber prepared under optimum conditions were 37.99 %, 1208.87 mg/g and 374.65 mg/g, respectively.


2009 ◽  
Vol 81 (2) ◽  
pp. 178-183 ◽  
Author(s):  
Qing-fu Zeng ◽  
Jie Fu ◽  
Yin-tao Shi ◽  
Dong-sheng Xia ◽  
Hai-liang Zhu

2013 ◽  
Vol 781-784 ◽  
pp. 1941-1944 ◽  
Author(s):  
Zhao You Zhu ◽  
Li Li Wang ◽  
Wan Ling Wang ◽  
Ying Long Wang

Waste activated carbon (AC) containing caffeine was produced during the process of the production for caffeine. The process of treatment caffeine-saturated AC using thermal regeneration was explored and factors on the regeneration of activated carbon were investigated. The optimum conditions obtained were: temperature is 650 °C, the regeneration time is 180 min, the carrier gas velocity is 0.002 m/s, carbon layer thickness is 0.1 m. Under these conditions, activated carbon regeneration efficiency reached 90.3%. In addition, the pore structure of activated carbon before and after regeneration was characterized and the activated carbon surface area and pore size distribution under optimum conditions were determined by the adsorption isotherms.


Sign in / Sign up

Export Citation Format

Share Document