scholarly journals Within-population variability in a moth sex pheromone blend, part 2: selection towards fixation

2019 ◽  
Vol 6 (3) ◽  
pp. 182050 ◽  
Author(s):  
Astrid T. Groot ◽  
Michiel van Wijk ◽  
Ernesto Villacis-Perez ◽  
Peter Kuperus ◽  
Gerhard Schöfl ◽  
...  

To understand how variation in sexual communication systems evolves, the genetic architecture underlying sexual signals and responses needs to be identified. Especially in animals where mating signals are important for mate recognition, and signals and responses are governed by independently assorting genes, it is difficult to envision how signals and preferences can (co)evolve. Moths are a prime example of such animals. In the noctuid moth Heliothis virescens , we found within-population variation in the female pheromone. In previous selection experiments followed by quantitative trait locus (QTL) analysis and expression analysis of candidate desaturase genes, we developed a model involving a trans -acting repressor of the delta-11-desaturase. In our current study with new selection lines, we fixed the most extreme phenotype and found a single underlying mutation: a premature stop codon in the first coding exon of delta-11-desaturase, which we could trace back to its origin in the laboratory. Interestingly, we found no pleiotropic effects of this knock-out mutation on the male physiological or behavioural response, or on growth or fertility. This finding is in contrast to Drosophila melanogaster , where a single desaturase gene affects both female pheromone production and male behavioural response, but similar to other Lepidoptera where these traits are under independent genetic control. To our knowledge, this is the first time that a single point mutation has been identified that underlies the phenotypic variation in the pheromone signal of a moth.

Microbiology ◽  
2009 ◽  
Vol 155 (3) ◽  
pp. 751-760 ◽  
Author(s):  
Yu-Kuo Tsai ◽  
Hung-Wen Chen ◽  
Ta-Chun Lo ◽  
Thy-Hou Lin

Lactose metabolism is a changeable phenotype in strains of Lactobacillus casei. In this study, we found that L. casei ATCC 27139 was unable to utilize lactose. However, when exposed to lactose as the sole carbon source, spontaneous Lac+ clones could be obtained. A gene cluster (lacTEGF–galKETRM) involved in the metabolism of lactose and galactose in L. casei ATCC 27139 (Lac−) and its Lac+ revertant (designated strain R1) was sequenced and characterized. We found that only one nucleotide, located in the lacTEGF promoter (lacTp), of the two lac–gal gene clusters was different. The protein sequence identity between the lac–gal gene cluster and those reported previously for some L. casei (Lac+) strains was high; namely, 96–100 % identity was found and no premature stop codon was identified. A single point mutation located within the lacTp promoter region was also detected for each of the 41 other independently isolated Lac+ revertants of L. casei ATCC 27139. The revertants could be divided into six classes based on the positions of the point mutations detected. Primer extension experiments conducted on transcription from lacTp revealed that the lacTp promoter of these six classes of Lac+ revertants was functional, while that of L. casei ATCC 27139 was not. Northern blotting experiments further confirmed that the lacTEGF operon of strain R1 was induced by lactose but suppressed by glucose, whereas no blotting signal was ever detected for L. casei ATCC 27139. These results suggest that a single point mutation in the lacTp promoter was able to restore the transcription of a fully functional lacTEGF operon and cause a phenotype switch from Lac− to Lac+ for L. casei ATCC 27139.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 62
Author(s):  
Gloria De Mori ◽  
Giusi Zaina ◽  
Barbara Franco-Orozco ◽  
Raffaele Testolin ◽  
Emanuele De Paoli ◽  
...  

Kiwifruit belong to the genus Actinidia with 54 species apparently all functionally dioecious. The sex-determinants of the type XX/XY, with male heterogametic, operate independently of the ploidy level. Recently, the SyGI protein has been described as the suppressor of female development. In the present study, we exploited the CRISPR/Cas9 technology by targeting two different sites in the SyGI gene in order to induce a stable gene knock-out in two tetraploid male accessions of Actinidia chinensis var. chinensis. The two genotypes showed a regenerative efficiency of 58% and 73%, respectively. Despite not yet being able to verify the phenotypic effects on the flower structure, due to the long time required by tissue-cultured kiwifruit plants to flower, we obtained two regenerated lines showing near fixation of a unique modification in their genome, resulting in both cases in the onset of a premature stop codon, which induces the putative gene knock-out. Evaluation of gRNA1 locus for both regenerated plantlets resulted in co-amplification of a minor variant differing from the target region for a single nucleotide. A genomic duplication of the region in proximity of the Y genomic region could be postulated.


1999 ◽  
Vol 19 (8) ◽  
pp. 5417-5428 ◽  
Author(s):  
Lei Zheng ◽  
Yumay Chen ◽  
Wen-Hwa Lee

ABSTRACT hsHec1p, a Homo sapiens coiled-coil-enriched protein, plays an important role in M-phase progression in mammalian cells. ASaccharomyces cerevisiae protein, identical to Tid3p/Ndc80p and here designated scHec1p, has similarities in structure and biological function to hsHec1p. Budding yeast cells deleted in the scHEC1/NDC80 allele are not viable, but this lethal phenotype can be rescued by hsHEC1 under control of the endogenous scHEC1 promoter. At the nonpermissive temperature, significant mitotic delay, chromosomal missegregation, and decreased viability were observed in yeast cells with temperature-sensitive (ts) alleles of hsHEC1. In the hshec1-113 ts mutant, we found a single-point mutation changing Trp395 to a stop codon, which resulted in the expression of a C-terminally truncated 45-kDa protein. The binding of this mutated protein, hshec1-113p, to five identified hsHec1p-associated proteins was unchanged, while its binding to human SMC1 protein and yeast Smc1p was ts. Hec1p also interacts with Smc2p, and the binding of the mutated hshec1-113p to Smc2p was not ts. Overexpression of either hsHEC1 or scHEC1 suppressed the lethal phenotype of smc1-2 and smc2-6 at nonpermissive temperatures, suggesting that the interactions between Hec1p and Smc1p and -2p are biologically significant. These results suggest that Hec1 proteins play a critical role in modulating chromosomal segregation, in part, through their interactions with SMC proteins.


1996 ◽  
Vol 75 (06) ◽  
pp. 870-876 ◽  
Author(s):  
José Manuel Soria ◽  
Lutz-Peter Berg ◽  
Jordi Fontcuberta ◽  
Vijay V Kakkar ◽  
Xavier Estivill ◽  
...  

SummaryNonsense mutations, deletions and splice site mutations are a common cause of type I protein C deficiency. Either directly or indirectly by altering the reading frame, these' lesions generate or may generate premature stop codons and could therefore be expected to result in premature termination of translation. In this study, the possibility that such mutations could instead exert their pathological effects at an earlier stage in the expression pathway, through “allelic exclusion” at the RNA level, was investigated. Protein C (PROC) mRNA was analysed in seven Spanish type I protein C deficient patients heterozygous for two nonsense mutations, a 7bp deletion, a 2bp insertion and three splice site mutations. Ectopic RNA transcripts from patient and control lymphocytes were analysed by RT-PCR and direct sequencing of amplified PROC cDNA fragments. The nonsense mutations and the deletion were absent from the cDNAs indicating that only mRNA derived from the normal allele had been expressed. Similarly for the splice site mutations, only normal PROC cDNAs were obtained. In one case, exclusion of the mutated allele could be confirmed by polymorphism analysis. In contrast to these six mutations, the 2 bp insertion was not associated with loss of mRNA from the mutated allele. In this case, cDNA analysis revealed the absence of 19 bases from the PROC mRNA consistent with the generation and utilization of a cryptic splice site 3’ to the site of mutation, which would result in a frameshift and a premature stop codon. It is concluded that allelic exclusion is a common causative mechanism in those cases of type I protein C deficiency which result from mutations that introduce premature stop codons


Biochemistry ◽  
2019 ◽  
Vol 59 (1) ◽  
pp. 80-84 ◽  
Author(s):  
Debaleena Kar ◽  
Karthi Sellamuthu ◽  
Sangeetha Devi Kumar ◽  
Sandeep M. Eswarappa

Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 411
Author(s):  
María Lachgar ◽  
Matías Morín ◽  
Manuela Villamar ◽  
Ignacio del Castillo ◽  
Miguel Ángel Moreno-Pelayo

Nonsyndromic hereditary hearing loss is a common sensory defect in humans that is clinically and genetically highly heterogeneous. So far, 122 genes have been associated with this disorder and 50 of them have been linked to autosomal dominant (DFNA) forms like DFNA68, a rare subtype of hearing impairment caused by disruption of a stereociliary scaffolding protein (HOMER2) that is essential for normal hearing in humans and mice. In this study, we report a novel HOMER2 variant (c.832_836delCCTCA) identified in a Spanish family by using a custom NGS targeted gene panel (OTO-NGS-v2). This frameshift mutation produces a premature stop codon that may lead in the absence of NMD to a shorter variant (p.Pro278Alafs*10) that truncates HOMER2 at the CDC42 binding domain (CBD) of the coiled-coil structure, a region that is essential for protein multimerization and HOMER2-CDC42 interaction. c.832_836delCCTCA mutation is placed close to the previously identified c.840_840dup mutation found in a Chinese family that truncates the protein (p.Met281Hisfs*9) at the CBD. Functional assessment of the Chinese mutant revealed decreased protein stability, reduced ability to multimerize, and altered distribution pattern in transfected cells when compared with wild-type HOMER2. Interestingly, the Spanish and Chinese frameshift mutations might exert a similar effect at the protein level, leading to truncated mutants with the same Ct aberrant protein tail, thus suggesting that they can share a common mechanism of pathogenesis. Indeed, age-matched patients in both families display quite similar hearing loss phenotypes consisting of early-onset, moderate-to-profound progressive hearing loss. In summary, we have identified the third variant in HOMER2, which is the first one identified in the Spanish population, thus contributing to expanding the mutational spectrum of this gene in other populations, and also to clarifying the genotype–phenotype correlations of DFNA68 hearing loss.


Sign in / Sign up

Export Citation Format

Share Document