scholarly journals Instrument-free detection of polyphenols with a thread-based analytical device

2020 ◽  
Vol 7 (3) ◽  
pp. 192130
Author(s):  
Jiahong Song ◽  
Zhuang Ouyang ◽  
Wei Lu ◽  
Longfei Cai

We described an instrument-free method for quantitative analysis of the total content of tea polyphenols by measurement of the length of a coloured band. Polyphenols react with ferrous ions to form a colourless ferrous-polyphenols complex on cotton threads, which could be adsorbed on the threads. The complex was then oxidized to form a blue-black ferric-polyphenols complex, generating a blue-black band on the cotton thread. The length of this blue-black band was then measured to detect the total content of polyphenols. The advantages of this method include low cost, rapid analysis, low consumption, easy fabrication and operation. Furthermore, the digital instrument (scanner or camera) as well as the image processing software are not required. This proposed method was used to detect polyphenols in tea leaf extracts with an analytical result agreeing well with that obtained by a standard method, which demonstrates its potential in monitoring of tea leaf quality, especially in resource-limited regions and settings.

2019 ◽  
Vol 11 (4) ◽  
pp. 314-315
Author(s):  
James S Leathers ◽  
Maria Belen Pisano ◽  
Viviana Re ◽  
Gertine van Oord ◽  
Amir Sultan ◽  
...  

Abstract Background Treatment of HCV with direct-acting antivirals has enabled the discussion of HCV eradication worldwide. Envisioning this aim requires implementation of mass screening in resource-limited areas, usually constrained by testing costs. Methods We validated a low-cost, rapid diagnosis test (RDT) for HCV in three different continents in 141 individuals. Results The HCV RDT showed 100% specificity and sensitivity across different samples regardless of genotype or viral load (in samples with such information, 90%). Conclusions The HCV test validated in this study can allow for HCV screening in areas of need when properly used.


2020 ◽  
Vol 6 (3) ◽  
pp. 522-525
Author(s):  
Dorina Hasselbeck ◽  
Max B. Schäfer ◽  
Kent W. Stewart ◽  
Peter P. Pott

AbstractMicroscopy enables fast and effective diagnostics. However, in resource-limited regions microscopy is not accessible to everyone. Smartphone-based low-cost microscopes could be a powerful tool for diagnostic and educational purposes. In this paper, the imaging quality of a smartphone-based microscope with four different optical parameters is presented and a systematic overview of the resulting diagnostic applications is given. With the chosen configuration, aiming for a reasonable trade-off, an average resolution of 1.23 μm and a field of view of 1.12 mm2 was achieved. This enables a wide range of diagnostic applications such as the diagnosis of Malaria and other parasitic diseases.


2009 ◽  
Vol 71 (1) ◽  
pp. 113-118 ◽  
Author(s):  
Naznin Ara Begum ◽  
Samiran Mondal ◽  
Saswati Basu ◽  
Rajibul A. Laskar ◽  
Debabrata Mandal

2018 ◽  
Vol 26 (1) ◽  
pp. 124-128 ◽  
Author(s):  
Maziar M. Nourian ◽  
Patrick Kolbay ◽  
Soeren Hoehne ◽  
Ahrash E. Poursaid ◽  
Ann E. Rowley ◽  
...  

Background. Access to basic anesthetic monitoring in the developing world is lacking, which contributes to the 100 times greater anesthesia-related mortality in low- and middle-income countries. We hypothesize that an environmental sensor with a lower sampling rate could provide some clinical utility by providing CO2 levels, respiratory rate, and support in detection of clinical abnormalities. Materials and Methods. A bench-top lung simulation was created to replicate CO2 waveforms, and an environmental sensor was compared with industry-available technology. Sensor response time and respiratory rates were compared between devices. Additionally, an in silico model was created to replicate capnography pathology as waveforms would appear using the environmental sensor. Results and Conclusion. Breath simulations using the bench-top lung simulation produced similar results to industry standards with a degree of variability. Respiratory rates did not differ between the environmental sensor and all other devices tested. Finally, pathological waveforms created in silico carried a certain level of detail regarding ventilatory pathology, which could provide some clinical insight to an anesthesiologist. We believe our prototype is the first step toward making low-cost and portable capnography available in the resource-limited setting, and future efforts should focus on bridging the gap to safer anesthesia and surgery globally.


2016 ◽  
Vol 2 (3_suppl) ◽  
pp. 60s-60s
Author(s):  
Asya Agulnik ◽  
Dora Judith Soberanis Vasquez ◽  
Jose Emigdio García Ortiz ◽  
Lupe Nataly Mora Robles ◽  
Ricardo Mack ◽  
...  

Abstract 25 Background: Hospitalized pediatric oncology patients are at high risk for clinical decline and mortality, particularly in resource-limited settings. Pediatric Early Warning Scores (PEWS) are commonly used to aid with early identification of clinical deterioration; however, these scores have never been studied in oncology patients in low-resource settings. We describe the successful implementation of a modified PEWS at Unidad Nacional de Oncología Pediátrica (UNOP), a national pediatric oncology hospital in Guatemala. Methods: The PEWS used at Boston Children's Hospital (BCH) was modified through key informant meetings at UNOP, adjusting for practice variations between the two hospitals. After an initial pilot of the tool, the PEWS was implemented in all non-ICU inpatient areas at UNOP (60 beds with about 2,000 admissions/year). During implementation, systems were created to monitor errors in calculating PEWS, patient transfers to a higher level of care, and high PEWS scores for ongoing quality improvement. Results: Hospital-wide implementation occurred over 6 months, when 113 nurses were trained in the PEWS tool and algorithm. Compliance with PEWS performance and documentation was 100% by the end of the implementation period, with 300 to 400 PEWS measured daily and less than 10% errors. Monitoring of PEWS results reports an average of 5 high PEWS per week with 30% transferring to a higher level of care. Among patients requiring ICU transfer, 86% had an abnormal PEWS prior to transfer, which is similar to results at BCH (90%). Staff surveys showed a high degree of satisfaction with PEWS (4.6/5) and minimal difficulty using the score (2.3/5) (n=67). Conclusions: We describe the successful implementation of a PEWS in a pediatric oncology hospital in Guatemala. This work demonstrates that PEWS is a feasible, well-accepted, and low-cost quality improvement measure in this resource-limited setting. We now plan to evaluate the effects of this implementation on patient care and outcomes. AUTHORS' DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST: No COIs from the authors.


Author(s):  
TEMSURENLA JAMIR ◽  
AJUNGLA T

Objectives: The objective of the study was to estimate the seasonal variations in the antioxidant capacities, total polyphenol content (TPC), total flavonoid content (TFC), and tannin content (TC) of tea leaf extracts from two different plantation sites. Methods: Samples were collected from two tea gardens in Tuli and Ungma situated at N 26°39’19.3 E 094°39’22.7 and N 26°17’30.6 E 094°28’29.2, respectively, under the Mokokchung district of Nagaland, India. TPC, TFC, and TC from sample extracts were determined using Folin–Ciocalteu reagent, aluminum chloride colorimetric, and Folin–Ciocalteu assay. Apart from these, antioxidant capacities were analyzed using ferric reducing ability of plasma (FRAP) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. Results: The concentrations of total polyphenol, flavonoid, and tannin varied from 552.029±8.079 to 305.647±1.744 mg gallic acid equivalent/g, 238.770±0.508–148.457±1.653 mg catechin equivalent/g, and 26.453±0.485–20.173±0.173 mg tannic acid equivalent/g, respectively. FRAP and DPPH assay displayed value ranging from 2.564±0.023 to 1.074±0.023 mmol Fe(II) equivalent/g and 3.612±0.053–2.076±0.028 mmol Trolox equivalent/g. Significant seasonal variations in concentrations of these compounds were observed and a positive correlation between antioxidant capacities and phenolics of tea leaf extracts was established. Conclusion: Tea (Camellia sinensis (L.) O. Kuntze) has been regarded as a plant of immense medicinal and therapeutic value since time immemorial. The tea leaf extracts analyzed in this study gave high TPC, TFC, and TC, as well as high antioxidant activity in terms of DPPH and FRAP value. Studying such properties in tea leaves contributes more to our understandings of health benefit potentials in tea leaves and the quality of tea leaves on the basis of seasons and sites where they are planted.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S868-S868
Author(s):  
Sabina Holland ◽  
Allison DeLong ◽  
Tao Liu ◽  
Anna Makaretz ◽  
Mia Coetzer ◽  
...  

Abstract Background Cost still limits HIV-1 viral load (VL) routine monitoring in resource limited settings (RLS), preventing early detection of virologic failure (VF). Pooled VL testing reduces cost over individual testing (IND). We previously showed in simulation, that additional cost benefits over previously-used pooling deconvolution algorithms can be achieved by using low-cost, routinely-collected clinical markers to determine the order for VL testing in deconvolution (termed marker-assisted minipool plus algorithm; mMPA). This algorithm has not been assessed in-vitro. Methods 150 samples from 99 Ghanaian adults with HIV on first-line therapy (VF 17%; CD4-VL correlation −0.35) were used to construct 30, 5-sample pools: n = 10 with 0, n = 5 with 1, and n = 15 with 2 individuals with VF. VL testing was with Abbott M2000. Accuracy, number of tests and rounds of testing to deconvolute pools were estimated using four strategies: (1) IND; (2) Minipooling (MP); (3) Minipooling with algorithm (MPA); and (4) mMPA. Results Compared with IND, MP and MPA, mMPA reduced total number of tests per pool needed to ascertain VF: MP average 4.3 (95% confidence interval (CI) 3.5–5.2, p> 0.05), MPA 3.0 (95% CI 2.4–3.5, P < 0.001), and mMPA 2.5 (CI 2.0–3.0, P < 0.001). Compared with MP and MPA, mMPA further reduced VL tests by 42% (1.9 tests/pool, CI 1.3–2.4, P < 0.001) and 17% (0.5, CI 0.2–0.8, p = 0.004); and required fewer testing rounds than MPA by 17% (P < 0.01), thus producing results quicker. IND and MP had 100% sensitivity and specificity. MPA and mMPA had similar sensitivity of 96.1% (MPA CI 90.7–100%; mMPA CI 88.0–100.0%) and specificity of 99.5% and 99.2% (98.5–100.0% for MPA and 97.5–100.0% for mMPA). Specifically, 3/150 samples were misclassified with MPA and mMPA: one suppression as VF, and two VF as suppressed. Conclusion Laboratory evaluation confirms that deconvolution using mMPA with CD4 or other routinely-collected clinical information as low-cost biomarkers reduces the number of VL assays required to identify VF in a setting with a low prevalence of VF. Implementation of pooled VL testing using mMPA for deconvolution may increase the availability of VL monitoring in RLS. Work is ongoing to reduce complexity and misclassification, required prior to widespread implementation. Disclosures All authors: No reported disclosures.


Sign in / Sign up

Export Citation Format

Share Document