TeleSpiro: A low-cost mobile spirometer for resource-limited settings

Author(s):  
C. William Carspecken ◽  
Carlos Arteta ◽  
Gari D. Clifford
2019 ◽  
Vol 11 (4) ◽  
pp. 314-315
Author(s):  
James S Leathers ◽  
Maria Belen Pisano ◽  
Viviana Re ◽  
Gertine van Oord ◽  
Amir Sultan ◽  
...  

Abstract Background Treatment of HCV with direct-acting antivirals has enabled the discussion of HCV eradication worldwide. Envisioning this aim requires implementation of mass screening in resource-limited areas, usually constrained by testing costs. Methods We validated a low-cost, rapid diagnosis test (RDT) for HCV in three different continents in 141 individuals. Results The HCV RDT showed 100% specificity and sensitivity across different samples regardless of genotype or viral load (in samples with such information, 90%). Conclusions The HCV test validated in this study can allow for HCV screening in areas of need when properly used.


2012 ◽  
Vol 185 (1) ◽  
pp. 118-123 ◽  
Author(s):  
Azzania Fibriani ◽  
Nadya Farah ◽  
Inri Kusumadewi ◽  
Suzan D. Pas ◽  
Reinout van Crevel ◽  
...  

2009 ◽  
Vol 17 (6) ◽  
pp. 16-19 ◽  
Author(s):  
B. Cline ◽  
R. Luo ◽  
K. Kuhlmann

Many infectious diseases prevalent in the developing world, including malaria and tuberculosis, are difficult to diagnose on the basis of symptoms alone but can be accurately detected using microscope examination. Currently the expense, size, and fragility of optical microscopes impede their widespread use in resource-limited settings. Addressing these obstacles facing microscopy in the developing world is a pressing need; over 800,000 people, primarily children in Africa, die annually of malaria, and more than 1,500,000 people die annually of tuberculosis [1][2]. The aim of this study is to design and validate a microscope for use in the developing world that combines high-resolution imaging, extreme affordability, and long-term durability.


2019 ◽  
Author(s):  
Gaurav Byagathvalli ◽  
Aaron F. Pomerantz ◽  
Soham Sinha ◽  
Janet Standeven ◽  
M. Saad Bhamla

The centrifuge is an essential tool for many aspects of research and medical diagnostics. However, conventional centrifuges are often inaccessible outside of conventional laboratory settings, such as remote field sites, require a constant external power source, and can be prohibitively costly in resource-limited settings and STEM-focused programs. Here we present the 3D-Fuge, a 3D-printed hand-powered centrifuge, as a novel alternative to standard benchtop centrifuges. Based on the design principles of a paper-based centrifuge, this 3D-printed instrument increases the volume capacity to 2 mL and can reach hand-powered centrifugation speeds up to 6,000 rpm. The 3D-Fuge devices presented here are capable of centrifugation of a wide variety of different solutions such as spinning down samples for biomarker applications and performing nucleotide extractions as part of a portable molecular lab setup. We introduce the design and proof-of-principle trials that demonstrate the utility of low-cost 3D printed centrifuges for use in remote and educational settings.


2021 ◽  
Author(s):  
Mohini Bhupathi ◽  
Ganga Chinna Rao Devarapu

One of the best ways to contain the spread of COVID-19 is frequent testing of as many people as possible and timely isolation of uninfected personnel from infected personnel. However, the cost of massive testing is affordable in many countries. The existing technologies might not be scalable to offer affordable testing for millions of people. To address this issue, novel testing methods based on Loop-Mediated Isothermal Amplification (LAMP) were proposed that are more sensitive, require less reagents and can work with saliva samples instead of more tedious nasal swabs. As a result, LAMP based protocols can make it possible to drive the cost down to one dollar per test. These LAMP based methods require a centrifuge device, mostly for separation of viral particles from reaction inhibitors in saliva samples. However, centrifuge is neither accessible nor affordable in many resource limited settings, especially during this pandemic situation when normal supply chains are heavily disrupted. To overcome these challenges, we invented a low-cost centrifuge that can be useful for carrying out low-cost LAMP based detection of SARS-Cov2 virus in saliva. The 3D printed centrifuge (Mobilefuge) is portable, robust, stable, safe, easy to build and operate. The Mobilefuge doesn't require soldering or programming skills and can be built without any specialised equipment, yet practical enough for high throughput use. More importantly, Mobilefuge can be powered from widely available USB ports, including mobile phones and associated power supplies. This allows the Mobilefuge to be used even in off-grid and resource limited settings. We believe that our invention will aid the efforts to contain the spread of COVID-19 by lowering the costs of testing equipment. Apart from the COVID-19 testing, the Mobilefuge can have applications in the field of biomedical research and diagnostics.


PLoS ONE ◽  
2011 ◽  
Vol 6 (11) ◽  
pp. e28184 ◽  
Author(s):  
Zhiyong Zhou ◽  
Nick Wagar ◽  
Joshua R. DeVos ◽  
Erin Rottinghaus ◽  
Karidia Diallo ◽  
...  

2013 ◽  
Vol 59 (10) ◽  
pp. 1506-1513 ◽  
Author(s):  
Xiaoxi Yang ◽  
Nathaniel Z Piety ◽  
Seth M Vignes ◽  
Melody S Benton ◽  
Julie Kanter ◽  
...  

BACKGROUND The measurement of hemoglobin concentration ([Hb]) is performed routinely as a part of a complete blood cell count to evaluate the oxygen-carrying capacity of blood. Devices currently available to physicians and clinical laboratories for measuring [Hb] are accurate, operate on small samples, and provide results rapidly, but may be prohibitively expensive for resource-limited settings. The unavailability of accurate but inexpensive diagnostic tools often precludes proper diagnosis of anemia in low-income developing countries. Therefore, we developed a simple paper-based assay for measuring [Hb]. METHODS A 20-μL droplet of a mixture of blood and Drabkin reagent was deposited onto patterned chromatography paper. The resulting blood stain was digitized with a portable scanner and analyzed. The mean color intensity of the blood stain was used to quantify [Hb]. We compared the performance of the paper-based Hb assay with a hematology analyzer (comparison method) using blood samples from 54 subjects. RESULTS The values of [Hb] measured by the paper-based assay and the comparison method were highly correlated (R2 = 0.9598); the standard deviation of the difference between the two measurements was 0.62 g/dL. The assay was accurate within 1 g/dL 90.7% of the time, overestimating [Hb] by ≥1 g/dL in 1.9% and underestimating [Hb] by ≥1 g/dL in 7.4% of the subjects. CONCLUSIONS This study demonstrates the feasibility of the paper-based Hb assay. This simple, low-cost test should be useful for diagnosing anemia in resource-limited settings, particularly in the context of care for malaria, HIV, and sickle cell disease patients in sub-Saharan Africa.


Sign in / Sign up

Export Citation Format

Share Document