STRUCTURAL AND ELECTRONIC PROPERTIES OF Pd AND Au MONOLAYERS ADSORBED ON MoS2: A COMPARATIVE STUDY FROM DFT CALCULATIONS

2018 ◽  
Vol 25 (06) ◽  
pp. 1850117
Author(s):  
PING WU ◽  
NAIQIANG YIN ◽  
WENJING CHENG ◽  
PENG LI

The morphology, stability and electronic properties of Pd and Au monolayers supported by MoS2 substrate have been investigated by using the first principles calculations based on periodic density functional theory (DFT). The results demonstrated that the most stable site is top of Mo top of S ([Formula: see text]) for the adsorption of Pd and Au monolayers on MoS2. We found that Pd/MoS2 with lower adsorption energy of [Formula: see text]0.54[Formula: see text]eV is energetically more stable than Au/MoS2. Due to the emergence of impurities state in the bandgap of MoS2, Pd/MoS2 and Au/MoS2 display metallic character upon coating of metal monolayers. We demonstrated that the Pd monolayer strongly hybrids with underlying Mo and S around the Fermi level, which is achieved by the intermediate Pd–S–Mo hybridized chains. On the contrary, intensity of impurities states around the fermi level is much weaker for Au/MoS2, which can be explained by weak hybridizations between sp state of Au and 4[Formula: see text] state of nearest neighboring Mo. The calculated results demonstrated that work functions are markedly modulated to 4.99 and 6.23[Formula: see text]eV after coating of Pd and Au monolayer, respectively, which can be qualitatively explained by the fact that Pd (as accepter) received charge from the MoS2 host, while Au donated charge to the host. These findings promise potential applications in the fields of nanoelectronics in future, such as it's helpful to choose suitable electrode materials for MoS2-based nanodevices.

Author(s):  
Enesio Marinho Jr ◽  
Pedro Alves da Silva Autreto

Graphene-based materials (GBMs) are a large family of materials that have attracted great interest due to potential applications. In this work, we applied first-principles calculations based on density functional theory...


2016 ◽  
Vol 27 (03) ◽  
pp. 1650035 ◽  
Author(s):  
Rezek Mohammad ◽  
Şenay Katırcıoğlu

Structural stability and electronic properties of GaAs[Formula: see text]P[Formula: see text] ([Formula: see text]) nanowires (NWs) in zinc-blende (ZB) ([Formula: see text] diameter [Formula: see text][Formula: see text]Å) and wurtzite (WZ) ([Formula: see text][Formula: see text]Å) phases are investigated by first-principles calculations based on density functional theory (DFT). GaAs ([Formula: see text]) and GaP ([Formula: see text]) compound NWs in WZ phase are found energetically more stable than in ZB structural ones. In the case of GaAs[Formula: see text]P[Formula: see text] alloy NWs, the energetically favorable phase is found size and composition dependent. All the presented NWs have semiconductor characteristics. The quantum size effect is clearly demonstrated for all GaAs[Formula: see text]P[Formula: see text] ([Formula: see text]) NWs. The band gaps of ZB and WZ structural GaAs compound NWs with [Formula: see text] diameter [Formula: see text][Formula: see text]Å and [Formula: see text][Formula: see text]Å, respectively are enlarged by the addition of concentrations of phosphorus for obtaining GaAs[Formula: see text]P[Formula: see text] NWs proportional to the x values around 0.25, 0.50 and 0.75.


2014 ◽  
Vol 28 (25) ◽  
pp. 1450195 ◽  
Author(s):  
Junfeng Ren ◽  
Yanru Zhang ◽  
Lin Zhang ◽  
Xiaobo Yuan ◽  
Guichao Hu

The structural stabilities and electronic properties of passivated and unpassivated SiC / AlN core/shell nanowires (CSNWs) along [0001] direction are investigated by using first-principles calculations with density functional theory. Our calculations demonstrate that thick AlN shell and small ratio of SiC core make the SiC / AlN CSNWs more stable. The band gaps decrease with the increasing of the CSNWs diameters. After passivation at the surface, type of SiC / AlN heterostructure changes and the mobility can be improved by increasing the CSNWs diameter and the SiC core ratio. These results provide an effective way to modulate the electronic properties of SiC / AlN structure, which is useful for fabrications and applications of CSNWs.


Catalysts ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 94
Author(s):  
Mailing Berwanger ◽  
Rajeev Ahuja ◽  
Paulo Cesar Piquini

First principles density functional theory was used to study the energetic, structural, and electronic properties of HfS 2 and TiS 2 materials in their bulk, pristine monolayer, as well as in the monolayer structure with the adsorbed C, N, and P atoms. It is shown that the HfS 2 monolayer remains a semiconductor while TiS 2 changes from semiconductor to metallic behavior after the atomic adsorption. The interaction with the external atoms introduces localized levels inside the band gap of the pristine monolayers, significantly altering their electronic properties, with important consequences on the practical use of these materials in real devices. These results emphasize the importance of considering the interaction of these 2D materials with common external atomic or molecular species.


RSC Advances ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 952-957 ◽  
Author(s):  
Konstantina Iordanidou ◽  
Michel Houssa ◽  
Clas Persson

Using first principles calculations based on density functional theory the impact of hole doping on the magnetic and electronic properties of two dimensional PtS2 is studied.


2013 ◽  
Vol 477-478 ◽  
pp. 1303-1306
Author(s):  
Qin Xiang Gao

Using the first-principles calculations within the density functional theory (DFT), we have investigated the structure, magnetism and half-metallic stability of Co2FeGa Heusler compound under pressure from 0 to 50GPa. The results revel that the lattice constant is gradually shrank and total magnetic moment in per unit slightly decreased with increasing pressure, respectively. Moreover, with the increase of the pressure, the Fermi level will move towards high-energy orientation. When the pressure reaches at 30GPa the most stable half-metallicity is observed which the Fermi level is located at the middle of the spin-minority gap.


2014 ◽  
Vol 510 ◽  
pp. 33-38 ◽  
Author(s):  
F.W. Badrudin ◽  
M.S.A. Rasiman ◽  
M.F.M. Taib ◽  
N.H. Hussin ◽  
O.H. Hassan ◽  
...  

Structural and electronic properties of a new fluorine-free cathode material of polyanionichydroxysulfates, LiFeSO4OH withcaminitestructure are studied using first principles density functional theory. From the calculated result, it reveals that antiferromagnetic configuration is more stable compared to ferromagnetic and non-magnetic configuration. Meanwhile, the density of state calculation divulges that this material exhibited large d-d type of band gap and would behave as a Mott-Hubbard insulator. Thus, this behaviour can lead to poor electronic conductivity.


2019 ◽  
Vol 20 (46) ◽  
pp. 7-12 ◽  
Author(s):  
Sarantuya Lkhagvajav ◽  
Namsrai Tsogbadrakh ◽  
Enkhjargal Enkhbayar ◽  
Sevjidsuren Galsan ◽  
Pagvajav Altantsog

In this study, the structure and electronic properties of the spinel compound Li4Ti5O12 (LTO) are investigated both theoretical and experimental methods. The experimental studies of structural and electronic properties were performed by X-ray diffraction and UV-visible spectroscopy. The first principles calculations allowed to establish the relationship between the structure and electronic properties. The spinel type structure of LTO is refined by the Rietveld analysis using the X-ray diffraction (XRD). The band gap of LTO was determined to be 3.55 eV using the UV-visible absorption spectra. The Density functional theory (DFT) augmented without and with the Hubbard U correction (GGA and GGA +U+J0) is used to elucidate the electronic structure of LTO. We have performed systematic studies of the first principles calculations based on the GGA and GGA+U for the crystal structure and electronic properties of spinel LTO. We propose that a Hubbard U correction improves the DFT results.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1640 ◽  
Author(s):  
Yangqi Ji ◽  
Xiaoli Yuan

The elastic properties and electronic properties of MxNy (M = Ti, Zr) TiN, Ti2N, Zr3N4, ZrN with different structures have been investigated using density functional theory. Through the calculation of the elastic constants, it was found that all of these structures meet the mechanical stability except for ZrN with space group P63mc. Their mechanical properties are studied by a comparison of various parameters. The stiffness of TiN is larger than that of ZrN with space group Fm 3 ¯ m. Ti2N’s stiffness with space group I41/amdz is larger than Ti2N with space group P42/mnm. Zr3N4’s stiffness with space group Pnam is largest in three structures of Zr3N4. TiN, Ti2N and ZrN are non-central force, Zr3N4 is central force. TiN and ZrN with space group Fm 3 ¯ m are brittle, and TiN is brittler than ZrN with space group Fm 3 ¯ m. The two kinds of Ti2N are brittle and Ti2N with space group I41/amdz is larger. Three structures of Zr3N4 are tough and Zr3N4 with space group I 4 ¯ 3d is the toughest. Meanwhile, the electronic properties of TiN, Ti2N, Zr3N4 and ZrN were calculated, possible superconducting properties of the studied materials were predicted.


2013 ◽  
Vol 27 (32) ◽  
pp. 1350188 ◽  
Author(s):  
G. LIU ◽  
M. S. WU ◽  
C. Y. OUYANG ◽  
B. XU

The evolution of the structural and electronic properties from SiC sheet to silicene is studied by using first-principles density functional theory. It is found that the planar configurations of the Si – C monolayer systems are basically kept except for the increase of the buckling of the planar structure when the substitution ratio of Si increases. Band gaps of the Si – C monolayer system decrease gradually when the substitution ratio of Si atoms ranges from 0% to 100%. The energy and type of the band gaps are closely related with the substitution ratio of Si atoms and the Si – C order. Further analysis of density of states reveals the orbital contribution of Si and C atoms near the Fermi level. The discussion of the electronic evolution from SiC sheet to silicene would widen the application of the Si – C monolayer systems in the optoelectronic field in the future nanotechnology.


Sign in / Sign up

Export Citation Format

Share Document