scholarly journals No evidence of male-biased sexual selection in a snake with conventional Darwinian sex roles

2020 ◽  
Vol 7 (10) ◽  
pp. 201261
Author(s):  
Brenna A. Levine ◽  
Gordon W. Schuett ◽  
Rulon W. Clark ◽  
Roger A. Repp ◽  
Hans-Werner Herrmann ◽  
...  

Decades of research on sexual selection have demonstrated that ‘conventional’ Darwinian sex roles are common in species with anisogamous gametes, with those species often exhibiting male-biased sexual selection. Yet, mating system characteristics such as long-term sperm storage and polyandry have the capacity to disrupt this pattern. Here, these ideas were explored by quantifying sexual selection metrics for the western diamond-backed rattlesnake ( Crotalus atrox ). A significant standardized sexual selection gradient was not found for males ( β SS = 0.588, p = 0.199) or females ( β SS = 0.151, p = 0.664), and opportunities for sexual selection ( I s ) and selection ( I ) did not differ between males ( I s = 0.069, I = 0.360) and females ( I s = 0.284, I = 0.424; both p > 0.05). Furthermore, the sexes did not differ in the maximum intensity of precopulatory sexual selection (males: s′ max = 0.155, females: s′ max = 0.080; p > 0.05). Finally, there was no evidence that male snout–vent length, a trait associated with mating advantage, is a target of sexual selection ( p > 0.05). These results suggest a lack of male-biased sexual selection in this population. Mating system characteristics that could erode male-biased sexual selection, despite the presence of conventional Darwinian sex roles, are discussed.

2021 ◽  
Vol 9 ◽  
Author(s):  
Theodora Fuss

The idea of “smart is sexy,” meaning superior cognition provides competitive benefits in mate choice and, therefore, evolutionary advantages in terms of reproductive fitness, is both exciting and captivating. Cognitively flexible individuals perceive and adapt more dynamically to (unpredictable) environmental changes. The sex roles that females and males adopt within their populations can vary greatly in response to the prevalent mating system. Based on how cognition determines these grossly divergent sex roles, different selection pressures could possibly shape the (progressive) evolution of cognitive abilities, suggesting the potential to induce sexual dimorphisms in superior cognitive abilities. Associations between an individual’s mating success, sexual traits and its cognitive abilities have been found consistently across vertebrate species and taxa, providing evidence that sexual selection may well shape the supporting cognitive prerequisites. Yet, while superior cognitive abilities provide benefits such as higher feeding success, improved antipredator behavior, or more favorable mate choice, they also claim costs such as higher energy levels and metabolic rates, which in turn may reduce fecundity, growth, or immune response. There is compelling evidence in a variety of vertebrate taxa that females appear to prefer skilled problem-solver males, i.e., they prefer those that appear to have better cognitive abilities. Consequently, cognition is also likely to have substantial effects on sexual selection processes. How the choosing sex assesses the cognitive abilities of potential mates has not been explored conclusively yet. Do cognitive skills guide an individual’s mate choice and does learning change an individual’s mate choice decisions? How and to which extent do individuals use their own cognitive skills to assess those of their conspecifics when choosing a mate? How does an individual’s role within a mating system influence the choice of the choosing sex in this context? Drawing on several examples from the vertebrate world, this review aims to elucidate various aspects associated with cognitive sex differences, the different roles of males and females in social and sexual interactions, and the potential influence of cognition on mate choice decisions. Finally, future perspectives aim to identify ways to answer the central question of how the triad of sex, cognition, and mate choice interacts.


2021 ◽  
Author(s):  
◽  
Jennifer Ann Moore

<p>Sexual selection and reproductive strategies affect individual fitness and population genetic diversity. Long-standing paradigms in sexual selection and mating system theory have been overturned with the recent integration of behavioural and genetic techniques. Much of this theory is based on avian systems, where a distinction has now been made between social and genetic partners. Reptiles provide contrast to well-understood avian systems because they are ectothermic, and phylogenetic comparisons are not hindered by complicated patterns of parental care. I investigate the implications of the mating system and reproductive ecology on individual fitness and population genetic diversity of tuatara, the sole extant representative of the archaic reptilian order Sphenodontia. Long-term data on individual size of Stephens Island tuatara revealed a density-dependent decline in body condition driven by an apparently high population growth rate resulting from past habitat modification. Spatial, behavioural, and genetic data from Stephens Island tuatara were analysed to assess territory structure, the mating system, and variation in male fitness. Large male body size was the primary predictor of 1) physical access to females, 2) competitive ability, and 3) mating and paternity success. Seasonal monogamy predominates, with probable long-term polygyny and polyandry. Annually, male reproduction is highly skewed in the wild and in captivity. Over 80% of offspring from a captive population on Little Barrier Island were sired by one male and multiple paternity was found in approximately 18% of these clutches, although it was not detected in any wild clutch. The dominance structure has lead to reduced genetic variation in the recovering Little Barrier Island population. Stephens Island tuatara show fine-scale population genetic structuring that appears to be driven by past habitat modification and a sedentary lifestyle in the absence of sex-biased dispersal or migration. These results will improve conservation management of tuatara by providing guidelines for maximising genetic diversity of small and captive populations and will aid in selecting founders for translocated populations. Because of the archaic phylogenetic position of tuatara, this study provides a baseline for comparisons of mating system evolution in reptiles.</p>


2021 ◽  
Author(s):  
◽  
Jennifer Ann Moore

<p>Sexual selection and reproductive strategies affect individual fitness and population genetic diversity. Long-standing paradigms in sexual selection and mating system theory have been overturned with the recent integration of behavioural and genetic techniques. Much of this theory is based on avian systems, where a distinction has now been made between social and genetic partners. Reptiles provide contrast to well-understood avian systems because they are ectothermic, and phylogenetic comparisons are not hindered by complicated patterns of parental care. I investigate the implications of the mating system and reproductive ecology on individual fitness and population genetic diversity of tuatara, the sole extant representative of the archaic reptilian order Sphenodontia. Long-term data on individual size of Stephens Island tuatara revealed a density-dependent decline in body condition driven by an apparently high population growth rate resulting from past habitat modification. Spatial, behavioural, and genetic data from Stephens Island tuatara were analysed to assess territory structure, the mating system, and variation in male fitness. Large male body size was the primary predictor of 1) physical access to females, 2) competitive ability, and 3) mating and paternity success. Seasonal monogamy predominates, with probable long-term polygyny and polyandry. Annually, male reproduction is highly skewed in the wild and in captivity. Over 80% of offspring from a captive population on Little Barrier Island were sired by one male and multiple paternity was found in approximately 18% of these clutches, although it was not detected in any wild clutch. The dominance structure has lead to reduced genetic variation in the recovering Little Barrier Island population. Stephens Island tuatara show fine-scale population genetic structuring that appears to be driven by past habitat modification and a sedentary lifestyle in the absence of sex-biased dispersal or migration. These results will improve conservation management of tuatara by providing guidelines for maximising genetic diversity of small and captive populations and will aid in selecting founders for translocated populations. Because of the archaic phylogenetic position of tuatara, this study provides a baseline for comparisons of mating system evolution in reptiles.</p>


2003 ◽  
Vol 50 (2) ◽  
pp. 101-108 ◽  
Author(s):  
B. Baer ◽  
P. Schmid-Hempel ◽  
J. T. H�eg ◽  
J. J. Boomsma

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252049
Author(s):  
Brenna A. Levine ◽  
Gordon W. Schuett ◽  
Warren Booth

Females of many vertebrate species have the capacity to store sperm within their reproductive tracts for prolonged periods of time. Termed long-term sperm storage, this phenomenon has many important physiological, ecological, and evolutionary implications, particularly to the study of mating systems, including male reproductive success and post-copulatory sexual selection. Reptiles appear particularly predisposed to long-term sperm storage, with records in most major lineages, with a strong emphasis on turtles and squamates (lizards, snakes, but not the amphisbaenians). Because facultative parthenogenesis is a competing hypothesis to explain the production of offspring after prolonged separation from males, the identification of paternal alleles through genetic analysis is essential. However, few studies in snakes have undertaken this. Here, we report on a wild-collected female Western Diamond-backed Rattlesnake, Crotalus atrox, maintained in isolation from the time of capture in September 1999, that produced two healthy litters approximately one and six years post capture. Genetic analysis of the 2005 litter, identified paternal contribution in all offspring, thus rejecting facultative parthenogenesis. We conclude that the duration of long-term sperm storage was approximately 6 years (71 months), making this the longest period over which a female vertebrate has been shown to store sperm that resulted in the production of healthy offspring.


2006 ◽  
Vol 274 (1609) ◽  
pp. 521-525 ◽  
Author(s):  
Charlotta Kvarnemo ◽  
Glenn I Moore ◽  
Adam G Jones

Studies of sexual selection in monogamous species have hitherto focused on sexual selection among males. Here, we provide empirical documentation that sexual selection can also act strongly on females in a natural population with a monogamous mating system. In our field-based genetic study of the monogamous Western Australian seahorse, Hippocampus subelongatus , sexual selection differentials and gradients show that females are under stronger sexual selection than males: mated females are larger than unmated ones, whereas mated and unmated males do not differ in size. In addition, the opportunity for sexual selection (variance in mating success divided by its mean squared) for females is almost three times that for males. These results, which seem to be generated by a combination of a male preference for larger females and a female-biased adult sex ratio, indicate that substantial sexual selection on females is a potentially important but under-appreciated evolutionary phenomenon in monogamous species.


2021 ◽  
pp. 1-12
Author(s):  
Janko Međedović

Abstract Empirical data on the relations between mating and reproductive success are rare for humans, especially for industrial and post-industrial populations. Existing data show that mating (and especially long-term mating) can be beneficial for fitness, especially that of males. This finding is in line with the hypothesis of sexual selection operating in human populations. The present research expands on previous studies by: 1) analysing additional fitness indicators, including having children with different partners; 2) including parental investment in the analysis as another important marker of sexual selection; 3) analysing several mediators between mating, reproductive fitness and parental investment, i.e. age of first and last reproduction and desired number of children. The data were obtained in 2019 from a sample of parents living in Serbia (N=497). The findings showed that long-term mating (duration of longest partner relationship) was positively related to parental investment and number of offspring and grand-offspring. Furthermore, the link between long-term mating and reproductive success was completely mediated by the age of first reproduction and desired number of children. Short-term mating (number of sexual partners) was marginally positively related to the number of children participants had with different partners and negatively related to parental investment. No sex differences in the link between mating, fitness and parental investment were detected. In general, the signatures of sexual selection were weak in the present data, but those that were detected were in line with sexual selection theory. The present findings provide a deeper insight into the adaptive function of mating and also the mechanism of how mating is beneficial for fitness.


Author(s):  
Leigh W. Simmons

‘Sex roles and stereotypes’ examines the notion, implicit in many of the original ideas about sexual selection, that males and females have natural ‘roles’ with characteristic behaviour associated with each sex. It also explores further the reasons behind deviations from the ‘typical’ sex roles in mate choice and in mating competition. Are there ‘standard’ male and female roles in both humans and other animal species? One version of sex roles holds that males are generally dominant and females submissive, stemming from the way that sexual selection favours different behaviours in each sex. This could mean that sexual selection dictates particular behaviours in males and females. But in fact, sexual behaviour is extraordinarily varied in nature.


Sign in / Sign up

Export Citation Format

Share Document