scholarly journals Detection and genetic characterization of the novel torque teno virus group 6 in Taiwanese general population

2021 ◽  
Vol 8 (11) ◽  
Author(s):  
Kuang-Liang Hsiao ◽  
Li-Yu Wang ◽  
Ju-Chien Cheng ◽  
Yu-Jung Cheng ◽  
Chiung-Ling Lin ◽  
...  

Torque teno virus (TTV) is one of the most common human viruses and can infect an individual with multiple genotypes chronically and persistently. TTV group 6 is a recently discovered phylogenetic group first isolated from eastern Taiwan indigenes, but whether the TTV group 6 was also prevalent in the general population still unknown. One hundred and three randomly collected blood samples from general population and 66 TTV positive DNA samples extracted from Taiwan indigenes were included. A group-6-specific PCR was developed for re-screen over TTV positive samples. Two TTV group 6 positive samples from general population were cloned and sequenced for identifying mix-infected TTVs and confirming their classification by maximum-likelihood and Bayesian inference phylogeny. TTV group 6 can be detected in 4.5% (4/89) and 7.6% (5/66) of TTV positive samples from Taiwanese general population and eastern Taiwan indigenes, respectively. Sample VC09 was mix-infected with TTV groups 3 and 6. Sample VC99 was mix-infected with TTV groups 3, 4 and 6. A highly diverse triple overlapping region was observed, which may represent a unique phenomenon of TTV. The group-6-specific PCR can successfully detect TTV group 6. TTV group 6 may be prevalent worldwide regardless of the geographic region and/or ethnic groups.

2007 ◽  
Vol 88 (7) ◽  
pp. 1939-1944 ◽  
Author(s):  
Masashi Ninomiya ◽  
Tsutomu Nishizawa ◽  
Masaharu Takahashi ◽  
Felipe R. Lorenzo ◽  
Tooru Shimosegawa ◽  
...  

In the process of searching for the recently described small anelloviruses 1 and 2 (SAVs) with the genomic DNA length of 2.2 or 2.6 kb in human sera, we isolated a novel virus with its genomic organization resembling those of torque teno virus (TTV) of 3.8–3.9 kb and torque teno mini virus (TTMV) of 2.8–2.9 kb. The entire genomic sequence of three isolates (MD1-032, MD1-073 and MD2-013), which comprised 3242–3253 bases and exhibited 76–99 % identities with the SAVs within the overlapping sequence, was determined. Although the MD1-032, MD1-073 and MD2-013 isolates differed by 10–28 % from each other over the entire genome, they segregated into the same cluster and were phylogenetically distinguishable from all reported TTVs and TTMVs. These results suggest that SAVs are deletion mutants of the novel virus with intermediate genomic length between those of TTV and TTMV and that the novel virus can be classified into a third group of the genus Anellovirus.


2021 ◽  
Author(s):  
Ander Urrutia ◽  
Konstantina Mitsi ◽  
Rachel Foster ◽  
Stuart Ross ◽  
Martin Carr ◽  
...  

ABSTRACTThis study provides a morphological, ultrastructural, and phylogenetic characterization of a novel micro-eukaryotic parasite (2.3-2.6 µm) infecting genera Echinogammarus and Orchestia. Longitudinal studies across two years revealed that infection prevalence peaked in late April and May, reaching 64% in Echinogammarus sp. and 15% in Orchestia sp., but was seldom detected during the rest of the year. The parasite infected predominantly haemolymph, connective tissue, tegument, and gonad, although hepatopancreas and nervous tissue were affected in heavier infections, eliciting melanization and granuloma formation. Cell division occurred inside walled parasitic cysts, often within host haemocytes, resulting in haemolymph congestion. Small subunit (18S) rRNA gene phylogenies including related environmental sequences placed the novel parasite as a highly divergent lineage within Class Filasterea, which together with Choanoflagellatea represent the closest protistan relatives of Metazoa. We describe the new parasite as Txikispora philomaios n. sp. n. g., the first confirmed parasitic filasterean lineage, which otherwise comprises four free-living flagellates and a rarely observed endosymbiont of snails. Lineage-specific PCR probing of other hosts and surrounding environments only detected T. philomaios in the platyhelminth Procerodes sp. We expand the known diversity of Filasterea by targeted searches of metagenomic datasets, resulting in 13 previously unknown lineages from environmental samples.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 699
Author(s):  
Katarína Peňazziová ◽  
Ľuboš Korytár ◽  
Patrik Pastorek ◽  
Juraj Pistl ◽  
Diana Rusňáková ◽  
...  

This study reports on a fatal case of a captive great grey owl infected with the West Nile virus (WNV) in the zoological garden Košice, eastern Slovakia (Central Europe). The tissue samples of the dead owl were used for virus isolation and genetic characterization. The novel isolate is genetically closer to Hungarian, Greek, and Bulgarian strains from the central/southern European clade of lineage 2 than to the strains previously isolated in Slovakia. Interestingly, it carries NS3-249P, a molecular virulence determinant associated with higher neurovirulence, which has not previously been observed in Slovakia. Subsequent serological investigation of the captive owls revealed additional seropositive animals, indicating local WNV transmission. Although no WNV-positive mosquitoes were found, the presence of the WNV principal vector Culex pipiens complex together with the described fatal case and further serological findings indicate an endemic focus of bird-neurovirulent WNV variant in the area.


2001 ◽  
Vol 120 (5) ◽  
pp. A166-A166
Author(s):  
S FUJII ◽  
T KUSAKA ◽  
T KAIHARA ◽  
Y UEDA ◽  
T CHIBA ◽  
...  

2009 ◽  
Vol 221 (03) ◽  
Author(s):  
R Vagkopoulou ◽  
C Eckert ◽  
U Ungethüm ◽  
G Körner ◽  
M Stanulla ◽  
...  

Tick-borne encephalitis virus (TBEV) was isolated for the first time in Sweden in 1958 (from ticks and from 1 tick-borne encephalitis [TBE] patient).1 In 2003, Haglund and colleagues reported the isolation and antigenic and genetic characterization of 14 TBEV strains from Swedish patients (samples collected 1991–1994).2 The first serum sample, from which TBEV was isolated, was obtained 2–10 days after onset of disease and found to be negative for anti-TBEV immunoglobulin M (IgM) by enzyme-linked immunosorbent assay (ELISA), whereas TBEV-specific IgM (and TBEV-specific immunoglobulin G/cerebrospinal fluid [IgG/CSF] activity) was demonstrated in later serum samples taken during the second phase of the disease.


Author(s):  
Rita Indirli ◽  
Biagio Cangiano ◽  
Eriselda Profka ◽  
Elena Castellano ◽  
Giovanni Goggi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document