scholarly journals Numerical biomechanics modelling of indirect mitral annuloplasty treatments for functional mitral regurgitation

2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Lee Galili ◽  
Adi White Zeira ◽  
Gil Marom

Mitral valve regurgitation (MR) is a common valvular heart disease where an improper closure leads to leakage from the left ventricle into the left atrium. There is a need for less-invasive treatments such as percutaneous repairs for a large inoperable patient population. The aim of this study is to compare several indirect mitral annuloplasty (IMA) percutaneous repair techniques by finite-element analyses. Two types of generic IMA devices were considered, based on coronary sinus vein shortening (IMA-CS) to reduce the annulus perimeter and based on shortening of the anterior–posterior diameter (IMA-AP). The disease, its treatments, and the heart function post-repair were modelled by modifying the living heart human model (Dassault Systèmes). A functional MR pathology that represents ischaemic MR was generated and the IMA treatments were simulated in it, followed by heart function simulations with the devices and leakage quantification from blood flow simulations. All treatments were able to reduce leakage, the IMA-AP device achieved better sealing, and there was a correlation between the IMA-CS device length and the reduction in leakage. The results of this study can help in bringing IMA-AP to market, expanding the use of IMA devices, and optimizing future designs of such devices.

Author(s):  
Wei Sun ◽  
Milton DeHerrera

Surgical treatment of severe functional mitral regurgitation (MR) often involves mitral annuloplasty, a procedure where a flexible or rigid annuloplasty ring is used to downsize the dilated mitral valve annulus (MA) and improve leaflet apposition by posterior annular correction. Recently various minimally invasive percutaneous transvenous mitral annuloplasty (PTMA) devices have been tested in patients who are not suitable candidates for a surgical procedure involving a thoracotomy. The approach is based on the concept that by utilizing the parallel location of the coronary sinus (CS) to the mitral annulus, a device, that can reshape the annulus, can be percutaneously deployed within the coronary sinus (CS) and the great cardiac vein (GCV). When the implanted device deforms, it shortens the MA anterior-posterior dimension and decreases mitral regurgitation (MR) (Fig. 1). Although the approach has been shown to be promising, PTMA device dysfunction and fatigue fracture have been reported in several firstin-human clinical trials (1). We hypothesize that quantitative understanding of the biomechanical interaction between the venous tissue, the mitral improve the efficacy of the PTMA treatment of MR. In this study, we aim to model interactions between the PTMA proximal anchor and the CS using computational tools.


2013 ◽  
Vol 16 (5) ◽  
pp. E295-E297 ◽  
Author(s):  
Joseph Lamelas ◽  
Christos Mihos ◽  
Orlando Santana

In patients with functional mitral regurgitation, the placement of a sling encircling both papillary muscles in conjunction with mitral annuloplasty appears to be a rational approach for surgical correction, because it addresses both the mitral valve and the deformities of the subvalvular mitral apparatus. Reports in the literature that describe the utilization of this technique are few, and mainly involve a median sternotomy approach. The purpose of this communication is to describe the technical details of performing this procedure via a minimally invasive approach.


2009 ◽  
Vol 5 (1) ◽  
pp. 67
Author(s):  
Lutz Buellesfeld ◽  
Lazar Mandinov ◽  
Eberhard Grube ◽  
◽  
◽  
...  

Functional mitral regurgitation affects a substantial proportion of patients with congestive heart failure due to myocardial infarction or dilated cardiomyopathy. Functional mitral regurgitation greatly increases morbidity and mortality. Surgical annuloplasty is the standard of care for symptomatic patients with moderate or severe functional mitral regurgitation; however, a large number of patients are refused surgery. Several percutaneous approaches have been developed to address the need for less invasive treatment of mitral annulus dilatation. Devices using coronary sinus to cinch the mitral annulus are relatively easy to use; however, a number of factors may limit their clinical application, such as suboptimal anatomical relationship between the coronary sinus and mitral annulus, risk of coronary artery compression, large variability in the coronary venous anatomy and conflict with other therapies such as ablation or cardiac resynchronisation. Direct mitral annuloplasty is anticipated to be more effective than the coronary sinus approaches; however, it has yet to prove its safety and efficacy in carefully designed clinical trials. The best candidates and the best timing for each percutaneous mitral annuloplasty therapy, whether direct or indirect, have yet to be identified.


Author(s):  
Giuseppe Speziale ◽  
Marco Moscarelli

Mitral valve regurgitation may require complex repair techniques that are challenging in minimally invasive and may expose patients to prolonged cardiopulmonary bypass and cross-clamp times. Here, we present a stepwise operative approach that may facilitate the repair of the mitral valve in a minimally invasive fashion and may be carried out even when multiple posterior segments are involved. This how-to-do article presents a method that was performed in 148 patients that were referred to our institution for severe organic mitral regurgitation between 2008 and 2016. At mean ± SD follow-up of 45.5 ± 27 months, freedom from recurrent of mitral regurgitation 2+ or greater and reoperation was 95.2%.


Author(s):  
Thuy M. Pham ◽  
Qian Wang ◽  
Milton DeHerrera ◽  
Wei Sun

Functional mitral regurgitation (MR) is the consequence of left ventricular dysfunction occurring after ischemic heart disease and often has poor prognosis. Surgical repair and replacement of the mitral valve are currently being used to treat severe functional MR However, the technique carries high mortality rate [1] and is not suitable for patients with comorbidities and advanced age [2]. Recently, a new non-surgical intervention, percutaneous transvenous mitral annuloplasty (PTMA), is emerging as an attractive endovascular alternative that is less invasive, less recovery time, and cost effective. The device is delivered percutaneously into the coronary sinus (CS) vessel and once embedded, it contracts and shortens the septo-lateral distance of the mitral annulus, hence improve MR. However, despite of its feasibility, current clinical trials reported severe adverse events, such as device fracture [3]. The biomechanical interaction between the CS wall and the stent plays a critical role in the outcome of the deployment and the device performance. In this study, we proposed to analyze this interaction by developing Finite Element (FE) models of the CS vessel and the PTMA anchors and analyzing the peak stresses, strains, interaction forces (shear, normal) after the deployment of the proximal and distal anchors into a realistic patient-specific CS model.


2019 ◽  
Vol 41 (25) ◽  
pp. 2405-2408 ◽  
Author(s):  
Filippo Perbellini ◽  
Thomas Thum

Abstract Heart function relies on the interplay of several specialized cell types and a precisely regulated network of chemical and mechanical stimuli. Over the last few decades, this complexity has often been undervalued and progress in translational cardiovascular research has been significantly hindered by the lack of appropriate research models. The data collected are often oversimplified and these make the translation of results from the laboratory to clinical trials challenging and occasionally misleading. Living myocardial slices are ultrathin (100–400μm) sections of living cardiac tissue that maintain the native multicellularity, architecture, and structure of the heart and can provide information at a cellular/subcellular level. They overcome most of the limitations that affect other in vitro models and they can be prepared from human specimens, proving a clinically relevant multicellular human model for translational cardiovascular research. The publication of a reproducible protocol, and the rapid progress in methodological and technological discoveries which prevent significant structural and functional changes associated with chronic in vitro culture, has overcome the last barrier for the in vitro use of this human multicellular preparations. This technology can bridge the gap between in vitro and in vivo human studies and has the potential to revolutionize translational research approaches.


Circulation ◽  
2009 ◽  
Vol 120 (4) ◽  
pp. 326-333 ◽  
Author(s):  
Joachim Schofer ◽  
Tomasz Siminiak ◽  
Michael Haude ◽  
Jean P. Herrman ◽  
Jindra Vainer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document