scholarly journals Quantum mechanical effects in reactions involving hydrogen

It has been shown in a previous paper that classical mechanics are not adequate to treat the transition of a hydrogen atom or proton across an energy barrier of the dimensions commonly met with in chemical reaction. The treatment given was based on an exact solution of the Schrödinger equation and a type of potential curve having no discontinuities in slope, but owing to the laborious nature of the computations involved, no attempt was made to investigate quantitatively the effect of variations in the heat of activation, the width of the barrier, or the mass of the particle. The present paper describes an approximate treatment leading to simple equations which can be applied directly to investigate these points. In a recent paper, Wigner has given a method of treatment applicable to any form of potential curve. His final equations are, however, only valid for the case in which the difference between the quantum mechanical and classical results can be expressed as a small correction term, and cannot be applied when there are large deviations from classical behaviour.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
O. N. Senkov ◽  
D. B. Miracle

AbstractTwo classical criteria, by Pugh and Pettifor, have been widely used by metallurgists to predict whether a material will be brittle or ductile. A phenomenological correlation by Pugh between metal brittleness and its shear modulus to bulk modulus ratio was established more than 60 years ago. Nearly four decades later Pettifor conducted a quantum mechanical analysis of bond hybridization in a series of intermetallics and derived a separate ductility criterion based on the difference between two single-crystal elastic constants, C12–C44. In this paper, we discover the link between these two criteria and show that they are identical for materials with cubic crystal structures.


2020 ◽  
Vol 230 ◽  
pp. 00003 ◽  
Author(s):  
Dario Ferraro ◽  
Michele Campisi ◽  
Gian Marcello Andolina ◽  
Vittorio Pellegrini ◽  
Marco Polini

Recently the possibility to exploit quantum-mechanical effects to increase the performance of energy storage has raised a great interest. It consists of N two-level systems coupled to a single photonic mode in a cavity. We demonstrate the emergence of a quantum advantage in the charging power on this collective model (Dicke Quantum Battery) with respect to the one in which each two-level system is coupled to its own separate cavity mode (Rabi Quantum Battery). Moreover, we discuss the model of a Quantum Supercapacitor. This consists of two chains, one containing electrons and the other one holes, hosted by arrays of double quantum dots. The two chains are in close proximity and embedded in the same photonic cavity, in the same spirit of the Dicke model. We find the phase diagram of this model showing that, when transitioning from the ferro/antiferromagnetic to the superradiant phase, the quantum capacitance of the model is greatly enhanced.


2016 ◽  
pp. hxw037
Author(s):  
Jonathan P. Black ◽  
Christopher J.W. Breward ◽  
Peter D. Howell

Author(s):  
Anurag Chapagain

Abstract: It is a well-known fact in physics that classical mechanics describes the macro-world, and quantum mechanics describes the atomic and sub-atomic world. However, principles of quantum mechanics, such as Heisenberg’s Uncertainty Principle, can create visible real-life effects. One of the most commonly known of those effects is the stability problem, whereby a one-dimensional point base object in a gravity environment cannot remain stable beyond a time frame. This paper expands the stability question from 1- dimensional rod to 2-dimensional highly symmetrical structures, such as an even-sided polygon. Using principles of classical mechanics, and Heisenberg’s uncertainty principle, a stability equation is derived. The stability problem is discussed both quantitatively as well as qualitatively. Using the graphical analysis of the result, the relation between stability time and the number of sides of polygon is determined. In an environment with gravity forces only existing, it is determined that stability increases with the number of sides of a polygon. Using the equation to find results for circles, it was found that a circle has the highest degree of stability. These results and the numerical calculation can be utilized for architectural purposes and high-precision experiments. The result is also helpful for minimizing the perception that quantum mechanical effects have no visible effects other than in the atomic, and subatomic world. Keywords: Quantum mechanics, Heisenberg Uncertainty principle, degree of stability, polygon, the highest degree of stability


1984 ◽  
Vol 45 (C3) ◽  
pp. C3-229-C3-234 ◽  
Author(s):  
R. Gähler ◽  
R. Golub

Sign in / Sign up

Export Citation Format

Share Document