scholarly journals On wave matrices, and some properties of the wave equation

1—Wave matrices became important in wave theory as the result of the use of them made by Dirac to express the operator of the second order wave equation as the square of a linear one, and hence obtain a first order equation. Thus, p 2 representing the second order operator, the equation p 2 Ψ = 0, may be factorized, and written (∑ E α p α ) (∑ E α p α ) Ψ = 0, (α = 1, 2, . . . , n ), giving the first order equation ∑ E α p α Ψ = 0, (1) if the p α commute with themselves and with the E α , and if the E α are matrix roots of +1 or of —1, which satisfy E α E β = — E β E a (β ≠ α). (2)

Solid Earth ◽  
2018 ◽  
Vol 9 (6) ◽  
pp. 1277-1298
Author(s):  
Xiaoyu Zhang ◽  
Dong Zhang ◽  
Qiong Chen ◽  
Yan Yang

Abstract. The forward modeling of a scalar wave equation plays an important role in the numerical geophysical computations. The finite-difference algorithm in the form of a second-order wave equation is one of the commonly used forward numerical algorithms. This algorithm is simple and is easy to implement based on the conventional grid. In order to ensure the accuracy of the calculation, absorption layers should be introduced around the computational area to suppress the wave reflection caused by the artificial boundary. For boundary absorption conditions, a perfectly matched layer is one of the most effective algorithms. However, the traditional perfectly matched layer algorithm is calculated using a staggered grid based on the first-order wave equation, which is difficult to directly integrate into a conventional-grid finite-difference algorithm based on the second-order wave equation. Although a perfectly matched layer algorithm based on the second-order equation can be derived, the formula is rather complex and intermediate variables need to be introduced, which makes it hard to implement. In this paper, we present a simple and efficient algorithm to match the variables at the boundaries between the computational area and the absorbing boundary area. This new boundary-matched method can integrate the traditional staggered-grid perfectly matched layer algorithm and the conventional-grid finite-difference algorithm without formula transformations, and it can ensure the accuracy of finite-difference forward modeling in the computational area. In order to verify the validity of our method, we used several models to carry out numerical simulation experiments. The comparison between the simulation results of our new boundary-matched algorithm and other boundary absorption algorithms shows that our proposed method suppresses the reflection of the artificial boundaries better and has a higher computational efficiency.


2018 ◽  
Author(s):  
Xiaoyu Zhang ◽  
Dong Zhang ◽  
Qiong Chen ◽  
Yan Yang

Abstract. The forward modeling of a scalar wave equation plays an important role in the numerical geophysical computations. The finite-difference algorithm in the form of a second-order wave equation is one of the commonly used forward numerical algorithms. This algorithm is simple and is easy to implement based on the conventional-grid. In order to ensure the accuracy of the calculation, absorption layers should be introduced around the computational area to suppress the wave reflection caused by the artificial boundary. For boundary absorption conditions, a perfectly matched layer is one of the most effective algorithms. However, the traditional perfectly matched layer algorithm is calculated using a staggered-grid based on the first-order wave equation, which is difficult to directly integrate into a conventional-grid finite-difference algorithm based on the second-order wave equation. Although a perfectly matched layer algorithm based on the second-order equation can be derived, the formula is rather complex and intermediate variables need to be introduced, which makes it hard to implement. In this paper, we present a simple and efficient algorithm to match the variables at the boundaries between the computational area and the absorbing boundary area. This new boundary matched method can integrate the traditional staggered-grid perfectly matched layer algorithm and the conventional-grid finite-difference algorithm without formula transformations, and it can ensure the accuracy of finite-difference forward modeling in the computational area. In order to verify the validity of our method, we used several models to carry out numerical simulation experiments. The comparison between the simulation results of our new boundary matched algorithm and other boundary absorption algorithms shows that our proposed method suppresses the reflection of the artificial boundaries better and has a higher computational efficiency.


The paper is a continuation of the last paper communicated to these 'Proceedings.' In that paper, which we shall refer to as the first paper, a more general expression for space curvature was obtained than that which occurs in Riemannian geometry, by a modification of the Riemannian covariant derivative and by the use of a fifth co-ordinate. By means of a particular substitution (∆ μσ σ = 1/ψ ∂ψ/∂x μ ) it was shown that this curvature takes the form of the second order equation of quantum mechanics. It is not a matrix equation, however but one which has the character of the wave equation as it occurred in the earlier form of the quantum theory. But it contains additional terms, all of which can be readily accounted for in physics, expect on which suggested an identification with energy of the spin.


Geophysics ◽  
2021 ◽  
pp. 1-65
Author(s):  
Yingming Qu ◽  
Yixin Wang ◽  
Zhenchun Li ◽  
Chang Liu

Seismic wave attenuation caused by subsurface viscoelasticity reduces the quality of migration and the reliability of interpretation. A variety of Q-compensated migration methods have been developed based on the second-order viscoacoustic quasidifferential equations. However, these second-order wave-equation-based methods are difficult to handle with density perturbation and surface topography. In addition, the staggered grid scheme, which has an advantage over the collocated grid scheme because of its reduced numerical dispersion and enhanced stability, works in first-order wave-equation-based methods. We have developed a Q least-squares reverse time migration method based on the first-order viscoacoustic quasidifferential equations by deriving Q-compensated forward-propagated operators, Q-compensated adjoint operators, and Q-attenuated Born modeling operators. Besides, our method using curvilinear grids is available even when the attenuating medium has surface topography and can conduct Q-compensated migration with density perturbation. The results of numerical tests on two synthetic and a field data sets indicate that our method improves the imaging quality with iterations and produces better imaging results with clearer structures, higher signal-to-noise ratio, higher resolution, and more balanced amplitude by correcting the energy loss and phase distortion caused by Q attenuation. It also suppresses the scattering and diffracted noise caused by the surface topography.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
R. Naz ◽  
I. Naeem ◽  
F. M. Mahomed

This paper analyzes the first integrals and exact solutions of mathematical models of epidemiology via the partial Lagrangian approach by replacing the three first-order nonlinear ordinary differential equations by an equivalent system containing one second-order equation and a first-order equation. The partial Lagrangian approach is then utilized for the second-order ODE to construct the first integrals of the underlying system. We investigate the SIR and HIV models. We obtain two first integrals for the SIR model with and without demographic growth. For the HIV model without demography, five first integrals are established and two first integrals are deduced for the HIV model with demography. Then we utilize the derived first integrals to construct exact solutions to the models under investigation. The dynamic properties of these models are studied too. Numerical solutions are derived for SIR models by finite difference method and are compared with exact solutions.


The electron kernel functions are derived from solutions of the second-order wave equation, using the proper-time parametrization. Iterated kernel functions are introduced and a gauge-independent perturbation theory is developed. The separation of singular parts proceeds in terms of the iterated kernel functions valid in the absence of an electromagnetic field, and the singular expressions which have to be compensated in order to determine the physically significant part of the vacuum polarization are obtained in a more transparent form than those given originally by Heisenberg.


2013 ◽  
Vol 803 ◽  
pp. 157-160
Author(s):  
Zhen Zhen Kong ◽  
Dong Mei Jia ◽  
Su Wen Cui

The composite weakly basic resin (D301Fe) was prepared and examined using scanning electron microscopy and Fourier transform infrared spectroscopy. The adsorption kinetics of glyphosate from aqueous solution onto composite weakly basic resin (D301Fe) were investigated under different conditions. The experimental data was analyzed using various adsorption kinetic models like pseudo-first order, the pseudo-second order, the Elovich and the parabolic diffusion models to determine the best-fit equation for the adsorption of glyphosate onto D301Fe. The results show that the pseudo-second order equation fitted the experimental data well and its adsorption was chemisorption-controlled.


Sign in / Sign up

Export Citation Format

Share Document