Quantization of coupled orbits in metals

The failure of semi-elassical quantization of electron orbits in metals in the presence of a strong enough magnetic field (magnetic breakthrough) is discussed in an elementary fashion by means of first-order perturbation theory. The interference effects, which arise when orbits about different centres are coupled, are reproduced in a simple network analogue. Exact analysis of the network shows how the energy levels are broadened by the coupling and eventually reform into a different set of levels. Fourier analysis of the level density reveals what might be observed in the de Haas—van Alphen effect when magnetic breakthrough is significant, and it is concluded that in principle the whole evolution of the level system should be observable.

1975 ◽  
Vol 53 (23) ◽  
pp. 2590-2592
Author(s):  
J. Cejpek ◽  
J. Dobeš

The reaction processes in which a one-step transition is forbidden are analyzed from the point of view of the first order perturbation theory. The interference between two competing two-step reaction paths is found to be always constructive. A qualitative explanation of the experimentally observed reaction intensities is presented.


Author(s):  
Shyeh Tjing Loi ◽  
John C B Papaloizou

Abstract Observations of pressure-gravity mixed modes, combined with a theoretical framework for understanding mode formation, can yield a wealth of information about deep stellar interiors. In this paper, we seek to develop a formalism for treating the effects of deeply buried core magnetic fields on mixed modes in evolved stars, where the fields are moderate, i.e. not strong enough to disrupt wave propagation, but where they may be too strong for non-degenerate first-order perturbation theory to be applied. The magnetic field is incorporated in a way that avoids having to use this. Inclusion of the Lorentz force term is shown to yield a system of differential equations that allows for the magnetically-affected eigenfunctions to be computed from scratch, rather than following the approach of first-order perturbation theory. For sufficiently weak fields, coupling between different spherical harmonics can be neglected, allowing for reduction to a second-order system of ordinary differential equations akin to the usual oscillation equations that can be solved analogously. We derive expressions for (i) the mixed-mode quantisation condition in the presence of a field and (ii) the frequency shift associated with the magnetic field. In addition, for modes of low degree we uncover an extra offset term in the quantisation condition that is sensitive to properties of the evanescent zone. These expressions may be inverted to extract information about the stellar structure and magnetic field from observational data.


2011 ◽  
Vol 26 (29) ◽  
pp. 4991-5003 ◽  
Author(s):  
ROBERTO V. MALUF

We consider the influence of a noncommutative space on the Klein–Gordon and the Dirac oscillators. The nonrelativistic limit is taken and the θ-modified Hamiltonians are determined. The corrections of these Hamiltonians on the energy levels are evaluated in first-order perturbation theory. It is observed a total lifting of the degeneracy to the considered levels. Such effects are similar to the Zeeman splitting in a commutative space.


Author(s):  
D. Semkat ◽  
H. Fehske ◽  
H. Stolz

AbstractWe investigate quantum many-body effects on Rydberg excitons in cuprous oxide induced by the surrounding electron-hole plasma. Line shifts and widths are calculated by full diagonalisation of the plasma Hamiltonian and compared to results in first order perturbation theory, and the oscillator strength of the exciton lines is analysed.


2005 ◽  
Vol 16 (06) ◽  
pp. 951-968 ◽  
Author(s):  
MENG ZHANG ◽  
BING-CONG GOU

Variational calculations are carried out with a multiconfiguration-interaction wave function to obtain the relativistic energies of the 1s2 2 ln l 1 S (m)(n =2–6, m1–5) states for the beryllium isoelectronic sequence (Z =4–10). Relativistic corrections and the mass polarization effects are evaluated with the first-order perturbation theory. The identifications of the energy levels for 1s2 2 ln l 1 S (m)(n =2–6, m1–5) states in the Be-like ions are reported. The oscillator strengths, transition rates and wavelengths are also calculated. The calculated results are compared with other theoretical and experimental data in the literature.


Sign in / Sign up

Export Citation Format

Share Document