Rows of two dimensional drops at fluid/liquid interfaces

The shape of two dimensional drops approaching their homophase in an infinite horizontal row has been obtained from the governing analytical equations. In particular the area of the draining film is less than that beneath a single two dimensional drop, indicating that drops in a row will coalesce quicker. Analogous conclusions may be drawn for cylinders.

ACS Nano ◽  
2019 ◽  
Vol 13 (11) ◽  
pp. 12385-12392 ◽  
Author(s):  
Jeffrey D. Cain ◽  
Amin Azizi ◽  
Kathleen Maleski ◽  
Babak Anasori ◽  
Emily C. Glazer ◽  
...  

Surfactants ◽  
2019 ◽  
pp. 73-112
Author(s):  
Bob Aveyard

The variation of interfacial tension of a solution with surfactant concentration in bulk can be used, in conjunction with the Gibbs adsorption equation, to probe the behaviour of adsorbed surfactant monolayers. An adsorption isotherm equation expresses the relationship between bulk and surface concentrations of surfactant, and is used to determine thermodynamic quantities of surfactant adsorption. The variation of the surface pressure of a surfactant monolayer with the surface concentration is described by a surface equation of state, which reflects something of the nature of a monolayer. The way in which inorganic electrolytes modify the adsorption and monolayer behaviour of ionic surfactants is explained, and adsorption from surfactant mixtures is also introduced. In the Appendix, the discussion is extended to the treatment of adsorbed monolayers as two-dimensional solutions of surfactant with solvent molecules, rather than as two-dimensional gases.


2009 ◽  
Vol 08 (01n02) ◽  
pp. 119-122
Author(s):  
LI ZHANG ◽  
HUA-YAN SI ◽  
HUA XU ◽  
HAO-LI ZHANG ◽  
YU-QING XIONG

Highly ordered arrays consisting uniform fluorescent cadmium selenide ( CdSe ) quantum dots (QDs) ring or dot structures were obtained by self-assembly of QDs on chemically patterned substrates. In this method, Au substrates with alternating hydrophobic and hydrophilic square patterns are firstly fabricated by microcontact printing, which allows water droplets to condense on the hydrophilic regions to provide two-dimensional template arrays. The CdSe QDs are then assembled at the liquid/liquid interfaces to give uniform micro or nanostructures. The shape and size of the rings and dots can be tailored by controlling the relative evaporation speed of the water and the organic solvents. The obtained nanostructures have ideal topography to avoid substrate-induced fluorescence quenching.


2019 ◽  
Vol 5 (11) ◽  
pp. eaaw9120
Author(s):  
Yang Li ◽  
Huimin Gao ◽  
Huan Yu ◽  
Ke Jiang ◽  
Hua Yu ◽  
...  

Two-dimensional synthetic polymers (2DSPs) are sheet-like macromolecules consisting of covalently linked repeat units in two directions. Access to 2DSPs with controlled size and shape and diverse functionality has been limited because of the need for monomers to retain their crystallinity throughout polymerization. Here, we describe a synthetic strategy for 2DSPs that obviates the need for crystallinity, via the free radical copolymerization of amphiphilic gemini monomers and their monomeric derivatives arranged in a bilayer at solid-liquid interfaces. The ease of this strategy allowed the preparation of 2DSPs with well-controlled size and shape and diverse functionality on solid templates composed of various materials with wide-ranging surface curvatures and dimensions. The resulting 2DSPs showed remarkable mechanical strength and have multiple applications, such as nanolithographic resist and antibacterial agent. The broad scope of this approach markedly expands the chemistry, morphology, and functionality of 2DSPs accessible for practical applications.


2019 ◽  
Vol 10 ◽  
pp. 1559-1587 ◽  
Author(s):  
Katsuhiko Ariga ◽  
Michio Matsumoto ◽  
Taizo Mori ◽  
Lok Kumar Shrestha

Much attention has been paid to the synthesis of low-dimensional materials from small units such as functional molecules. Bottom-up approaches to create new low-dimensional materials with various functional units can be realized with the emerging concept of nanoarchitectonics. In this review article, we overview recent research progresses on materials nanoarchitectonics at two-dimensional liquid interfaces, which are dimensionally restricted media with some freedoms of molecular motion. Specific characteristics of molecular interactions and functions at liquid interfaces are briefly explained in the first parts. The following sections overview several topics on materials nanoarchitectonics at liquid interfaces, such as the preparation of two-dimensional metal-organic frameworks and covalent organic frameworks, and the fabrication of low-dimensional and specifically structured nanocarbons and their assemblies at liquid–liquid interfaces. Finally, interfacial nanoarchitectonics of biomaterials including the regulation of orientation and differentiation of living cells are explained. In the recent examples described in this review, various materials such as molecular machines, molecular receptors, block-copolymer, DNA origami, nanocarbon, phages, and stem cells were assembled at liquid interfaces by using various useful techniques. This review overviews techniques such as conventional Langmuir–Blodgett method, vortex Langmuir–Blodgett method, liquid–liquid interfacial precipitation, instructed assembly, and layer-by-layer assembly to give low-dimensional materials including nanowires, nanowhiskers, nanosheets, cubic objects, molecular patterns, supramolecular polymers, metal-organic frameworks and covalent organic frameworks. The nanoarchitecture materials can be used for various applications such as molecular recognition, sensors, photodetectors, supercapacitors, supramolecular differentiation, enzyme reactors, cell differentiation control, and hemodialysis.


Sign in / Sign up

Export Citation Format

Share Document