The equilibrium and stability of two dimensional pendent drops

The paper gives a mathematical account of the equilibrium and the stability of equilibrium for two dimensional pendent drops hanging under the action of gravity and surface tension forces. The drops may be formed under conditions of constant volume, as when they hang from the horizontal lower edge of a vertical plate. Alternatively, equilibrium may be maintained under conditions of constant pressure, as, for example, when a drop is formed in a narrow gap between two plane parallel vertical plates when the fluid between the plates is connected to a reservoir of large free surface area. Equilibrium profiles, symmetric about a vertical centre plane, are calcu­lated for drops hanging from horizontal apertures of varying widths. It is shown that the volume of the suspended drop achieves a maximum as a function of, say, its depth, for each given aperture. For apertures of width less than a critical value π in capillary units of length, it is found that the pressure, as measured by the internal pressure at the aperture in excess of the external pressure, also achieves a positive maximum. If the volume and depth of the drop are gradually raised from zero the pressure maximum occurs before the volume maximum is reached. For an aperture of width π the pressure maximum is reduced to zero and the maximum point occurs at the initial position where the volume and depth are zero. For apertures greater than π the pressure decreases monotonically from zero as the depth is raised from zero. In the discussion of the stability we distinguish between two and three dimensional disturbances, and between disturbances which are symmetric or asymmetric about the centre plane of symmetry of the equilibrium profile. Drops maintained at constant volume are shown to have a limit point instability to two dimensional weak disturbances symmetric about the centre plane, which occurs at the point of maximum volume. Likewise, drops maintained at constant pressure in an aperture of width less than π, have a limit point instability to disturbances of the same form, which occurs at the point of maximum pressure. The analysis shows that for apertures greater than π drops cannot be formed under conditions of constant pressure, since they are unstable from the initial position of zero depth and volume. A brief discussion is given for the instability to plane asymmetric disturbances, which we find to be unimportant in the sense that these instabilities cannot occur before the equilibrium has already become unstable to disturbances of symmetric type. The most important source of instability of the two dimensional drop is the three dimensional disturbance, that is, one having a sinuous variation along the length of the drop. The stability to such displacements is studied in the last main section of the paper. It is shown there that instability of this form, with disturbances symmetric about the vertical centre plane, will begin to arise for apertures less than π when the equilibrium profile reaches the pressure maximum, for drops maintained both at constant volume and at constant pressure. For drops maintained at constant pressure this does not make any change in the position of the first onset of instability, since, then, two and three dimensional instabilities arise at the same point. However, for drops maintained at constant volume there is a marked change in behaviour. Since the pressure maximum occurs at a lower volume than the volume maximum, and at a lower depth, the drop maintained at constant volume will always become unstable to three dimensional instability first. The nature of the equilibrium for apertures greater than π is such that the three dimensional instability sets in at the outset, in this case for drops of both kinds. This is in agreement with a result of Plateau (1873) and Maxwell (1875), who studied the stability of a plane horizontal interface in a slit, and showed that for a slit of width greater than π the plane interface is not stable to small displacements which conserve the volume. Finally, we have considered three dimensional disturbances which are asymmetric about the centre plane, and we have shown that instabilities of this form cannot arise.

Author(s):  
T. R. Camp ◽  
I. J. Day

This paper presents a study of stall inception mechanisms a in low-speed axial compressor. Previous work has identified two common flow breakdown sequences, the first associated with a short lengthscale disturbance known as a ‘spike’, and the second with a longer lengthscale disturbance known as a ‘modal oscillation’. In this paper the physical differences between these two mechanisms are illustrated with detailed measurements. Experimental results are also presented which relate the occurrence of the two stalling mechanisms to the operating conditions of the compressor. It is shown that the stability criteria for the two disturbances are different: long lengthscale disturbances are related to a two-dimensional instability of the whole compression system, while short lengthscale disturbances indicate a three-dimensional breakdown of the flow-field associated with high rotor incidence angles. Based on the experimental measurements, a simple model is proposed which explains the type of stall inception pattern observed in a particular compressor. Measurements from a single stage low-speed compressor and from a multistage high-speed compressor are presented in support of the model.


1987 ◽  
Vol 174 ◽  
pp. 187-208 ◽  
Author(s):  
Jun Zhang ◽  
W. K. Melville

Linear three-dimensional instabilities of nonlinear two-dimensional uniform gravitycapillary waves are studied using numerical methods. The eigenvalue system for the stability problem is generated using a Galerkin method and differs in detail from techniques used to study the stability of pure gravity waves (McLean 1982) and pure capillary waves (Chen & Saffman 1985). It is found that instabilities develop in the neighbourhood of the linear (triad, quartet and quintet) resonance curves. Further, both sum and difference triad ressonances are unstable for sufficiently steep waves in consequence of which Hasselmann's (1967) theorem is restricted to weakly nonlinear waves. The appearance of a superharmonic two-dimensional instability and bifurcation to three-dimensional waves are noted.


1978 ◽  
Vol 56 (10) ◽  
pp. 1390-1394
Author(s):  
K. P. Srivastava

An extensive numerical study on specific heat at constant volume (Cv) for ordered and isotopically disordered lattices has been made. Cv at various temperatures for ordered and disordered linear and two-dimensional lattices have been compared and no appreciable difference in Cv between these two structures has been observed. Effect of concentration of light atoms on Cv for three-dimensional isotopically disordered lattices has also been shown.In spite of taking next-nearest-neighbour interaction into account, no substantial change in Cv between the ordered and isotopically disordered linear lattices has been found. It is shown that the low lying modes contribute substantially at low temperatures.


2020 ◽  
Vol 8 ◽  
Author(s):  
Ying Zhao ◽  
Jin Jing ◽  
Ning Yan ◽  
Min-Le Han ◽  
Guo-Ping Yang ◽  
...  

Four new different porous crystalline Cd(II)-based coordination polymers (CPs), i. e., [Cd(mdpt)2]·2H2O (1), [Cd2(mdpt)2(m-bdc)(H2O)2] (2), [Cd(Hmdpt)(p-bdc)]·2H2O (3), and [Cd3(mdpt)2(bpdc)2]·2.5NMP (4), were obtained successfully by the assembly of Cd(II) ions and bitopic 3-(3-methyl-2-pyridyl)-5-(4-pyridyl)-1,2,4-triazole (Hmdpt) in the presence of various benzendicarboxylate ligands, i.e., 1,3/1,4-benzenedicarboxylic acid (m-H2bdc, p-H2bdc) and biphenyl-4,4′-bicarboxylate (H2bpdc). Herein, complex 1 is a porous 2-fold interpenetrated four-connected 3D NbO topological framework based on the mdpt− ligand; 2 reveals a two-dimensional (2D) hcb network. Interestingly, 3 presents a three-dimensional (3D) rare interpenetrated double-insertion supramolecular net via 2D ···ABAB··· layers and can be viewed as an fsh topological net, while complex 4 displays a 3D sqc117 framework. Then, the different gas sorption performances were carried out carefully for complexes 1 and 4, the results of which showed 4 has preferable sorption than that of 1 and can be the potential CO2 storage and separation material. Furthermore, the stability and luminescence of four complexes were performed carefully in the solid state.


2018 ◽  
Vol 841 ◽  
pp. 636-653
Author(s):  
Ting-Yueh Chang ◽  
Falin Chen ◽  
Min-Hsing Chang

A three-dimensional linear stability analysis is carried out for a convecting layer in which both the temperature and solute distributions are linear in the horizontal direction. The three-dimensional results show that, for $Le=3$ and 100, the most unstable mode occurs invariably as the longitudinal mode, a vortex roll with its axis perpendicular to the longitudinal plane, suggesting that the two-dimensional results are sufficient to illustrate the stability characteristics of the convecting layer. Two-dimensional results show that the stability boundaries of the transverse mode (a vortex roll with its axis perpendicular to the transverse plane) and the longitudinal modes are virtually overlapped in the regime dominated by thermal diffusion and the regime dominated by solute diffusion, while these two modes hold a significant difference in the regime the salt-finger instability prevails. More precisely, the instability area in terms of thermal Grashof number $Gr$ and solute Grashof number $Gs$ is larger for the longitudinal mode than the transverse mode, implying that, under any circumstance, the longitudinal mode is always more unstable than the transverse mode.


2011 ◽  
Vol 681 ◽  
pp. 411-433 ◽  
Author(s):  
HEMANT K. CHAURASIA ◽  
MARK C. THOMPSON

A detailed numerical study of the separating and reattaching flow over a square leading-edge plate is presented, examining the instability modes governing transition from two- to three-dimensional flow. Under the influence of background noise, experiments show that the transition scenario typically is incompletely described by either global stability analysis or the transient growth of dominant optimal perturbation modes. Instead two-dimensional transition effectively can be triggered by the convective Kelvin–Helmholtz (KH) shear-layer instability; although it may be possible that this could be described alternatively in terms of higher-order optimal perturbation modes. At least in some experiments, observed transition occurs by either: (i) KH vortices shedding downstream directly and then almost immediately undergoing three-dimensional transition or (ii) at higher Reynolds numbers, larger vortical structures are shed that are also three-dimensionally unstable. These two paths lead to distinctly different three-dimensional arrangements of vortical flow structures. This paper focuses on the mechanisms underlying these three-dimensional transitions. Floquet analysis of weakly periodically forced flow, mimicking the observed two-dimensional quasi-periodic base flow, indicates that the two-dimensional vortex rollers shed from the recirculation region become globally three-dimensionally unstable at a Reynolds number of approximately 380. This transition Reynolds number and the predicted wavelength and flow symmetries match well with those of the experiments. The instability appears to be elliptical in nature with the perturbation field mainly restricted to the cores of the shed rollers and showing the spatial vorticity distribution expected for that instability type. Indeed an estimate of the theoretical predicted wavelength is also a good match to the prediction from Floquet analysis and theoretical estimates indicate the growth rate is positive. Fully three-dimensional simulations are also undertaken to explore the nonlinear development of the three-dimensional instability. These show the development of the characteristic upright hairpins observed in the experimental dye visualisations. The three-dimensional instability that manifests at lower Reynolds numbers is shown to be consistent with an elliptic instability of the KH shear-layer vortices in both symmetry and spanwise wavelength.


2017 ◽  
Vol 822 ◽  
pp. 813-847 ◽  
Author(s):  
Azan M. Sapardi ◽  
Wisam K. Hussam ◽  
Alban Pothérat ◽  
Gregory J. Sheard

This study seeks to characterise the breakdown of the steady two-dimensional solution in the flow around a 180-degree sharp bend to infinitesimal three-dimensional disturbances using a linear stability analysis. The stability analysis predicts that three-dimensional transition is via a synchronous instability of the steady flows. A highly accurate global linear stability analysis of the flow was conducted with Reynolds number $\mathit{Re}<1150$ and bend opening ratio (ratio of bend width to inlet height) $0.2\leqslant \unicode[STIX]{x1D6FD}\leqslant 5$. This range of $\mathit{Re}$ and $\unicode[STIX]{x1D6FD}$ captures both steady-state two-dimensional flow solutions and the inception of unsteady two-dimensional flow. For $0.2\leqslant \unicode[STIX]{x1D6FD}\leqslant 1$, the two-dimensional base flow transitions from steady to unsteady at higher Reynolds number as $\unicode[STIX]{x1D6FD}$ increases. The stability analysis shows that at the onset of instability, the base flow becomes three-dimensionally unstable in two different modes, namely a spanwise oscillating mode for $\unicode[STIX]{x1D6FD}=0.2$ and a spanwise synchronous mode for $\unicode[STIX]{x1D6FD}\geqslant 0.3$. The critical Reynolds number and the spanwise wavelength of perturbations increase as $\unicode[STIX]{x1D6FD}$ increases. For $1<\unicode[STIX]{x1D6FD}\leqslant 2$ both the critical Reynolds number for onset of unsteadiness and the spanwise wavelength decrease as $\unicode[STIX]{x1D6FD}$ increases. Finally, for $2<\unicode[STIX]{x1D6FD}\leqslant 5$, the critical Reynolds number and spanwise wavelength remain almost constant. The linear stability analysis also shows that the base flow becomes unstable to different three-dimensional modes depending on the opening ratio. The modes are found to be localised near the reattachment point of the first recirculation bubble.


1998 ◽  
Vol 120 (3) ◽  
pp. 393-401 ◽  
Author(s):  
T. R. Camp ◽  
I. J. Day

This paper presents a study of stall inception mechanisms in a low-speed axial compressor. Previous work has identified two common flow breakdown sequences, the first associated with a short length-scale disturbance known as a “spike,” and the second with a longer length-scale disturbance known as a “modal oscillation.” In this paper the physical differences between these two mechanisms are illustrated with detailed measurements. Experimental results are also presented that relate the occurrence of the two stalling mechanisms to the operating conditions of the compressor. It is shown that the stability criteria for the two disturbances are different: Long length-scale disturbances are related to a two-dimensional instability of the whole compression system, while short length-scale disturbances indicate a three-dimensional breakdown of the flow-field associated with high rotor incidence angles. Based on the experimental measurements, a simple model is proposed that explains the type of stall inception pattern observed in a particular compressor. Measurements from a single-stage low-speed compressor and from a multistage high-speed compressor are presented in support of the model.


1970 ◽  
Vol 44 (3) ◽  
pp. 461-479 ◽  
Author(s):  
J. Kestin ◽  
R. T. Wood

The paper examines the stability of the uniform flow which approaches a two-dimensional stagnation region formed when a cylinder or a two-dimensional blunt body of finite curvature is immersed in a crossflow. It is shown that such a flow is unstable with respect to three-dimensional disturbances. This conclusion is reached on the basis of a mathematical analysis of a simplified form of the disturbance equation for the stream-wise component of the vorticity vector. The ultimate, or stable, flow pattern is governed by a singular Sturm–Liouville problem whose solution possesses a single eigenvalue. The resulting flow is one in which a regularly distributed system of counter-rotating vortices is super-imposed on the basic, Hiemenz-like pattern of streamlines. The spacing of the vortices is a unique function of the characteristics of the flow, and a theoretical estimate for it agrees well with experimental results. The analysis is extended heuristically to include the effect of free-stream turbulence on the spacing.The problem is similar to the classical Görtler–Hämmerlin study of the stability of stagnation flow against an infinite flat plate, which revealed the existence of a spectrum of eigenvalues for the disturbance equation. The present analysis yields the same result when an infinite radius of curvature is assumed for the blunt body.


1968 ◽  
Vol 32 (4) ◽  
pp. 801-808 ◽  
Author(s):  
M. Gaster ◽  
A. Davey

In this paper we examine the stability of a two-dimensional wake profile of the form u(y) = U∞(1 – r e-sy2) with respect to a pulsed disturbance at a point in the fluid. The disturbed flow forms an expanding wave packet which is convected downstream. Far downstream, where asymptotic expansions are valid, the motion at any point in the wave packet is described by a particular three-dimensional wave having complex wave-numbers. In the special case of very unstable flows, where viscosity does not have a significant influence, it is possible to evaluate the three-dimensional eigenvalues in terms of two-dimensional ones using the inviscid form of Squire's transformation. In this way each point in the physical plane can be linked to a particular two-dimensional wave growing in both space and time by simple algebraic expressions which are independent of the mean flow velocity profile. Computed eigenvalues for the wake profile are used in these relations to find the behaviour of the wave packet in the physical plane.


Sign in / Sign up

Export Citation Format

Share Document