New variational-Lagrangian thermodynamics of viscous fluid mixtures with thermomolecular diffusion

A principle of virtual dissipation generalizing d’Alembert’s principle to nonlinear irreversible thermodynamics is applied to viscous fluid mixtures with coupled thermomolecular diffusion. Original dynamical field equations are obtained directly from the variational principle. The use of new fundamental concepts and methods in the thermodynamics of open systems avoids the difficulties inherent in the classical Gibbs approach.The dissipative forces incorporated explicitly in the field equations are expressed by means of a dissipation invariant evaluated in detail in terms of coupled viscous and diffusive properties. Partial pressures and dissipative stresses are given new, unambiguous thermodynamic definitions. Lagrangian type equations with generalized coordinates are also obtained directly from the variational principle. They provide a powerful tool of simplified analysis of complex open systems as well as the foundation of a variety of finite element methods.

Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 227
Author(s):  
Tiberiu Harko ◽  
Francisco S. N. Lobo ◽  
Emmanuel N. Saridakis

We investigate the possibility of gravitationally generated particle production via the mechanism of nonminimal torsion–matter coupling. An intriguing feature of this theory is that the divergence of the matter energy–momentum tensor does not vanish identically. We explore the physical and cosmological implications of the nonconservation of the energy–momentum tensor by using the formalism of irreversible thermodynamics of open systems in the presence of matter creation/annihilation. The particle creation rates, pressure, and the expression of the comoving entropy are obtained in a covariant formulation and discussed in detail. Applied together with the gravitational field equations, the thermodynamics of open systems lead to a generalization of the standard ΛCDM cosmological paradigm, in which the particle creation rates and pressures are effectively considered as components of the cosmological fluid energy–momentum tensor. We consider specific models, and we show that cosmology with a torsion–matter coupling can almost perfectly reproduce the ΛCDM scenario, while it additionally gives rise to particle creation rates, creation pressures, and entropy generation through gravitational matter production in both low and high redshift limits.


2005 ◽  
Vol 14 (03n04) ◽  
pp. 667-676 ◽  
Author(s):  
S. D. MAHARAJ ◽  
M. GOVENDER

In a recent approach in modeling a radiating relativistic star undergoing gravitational collapse the role of the Weyl stresses was emphasized. It is possible to generate a model which is physically reasonable by approximately solving the junction conditions at the boundary of the star. In this paper we demonstrate that it is possible to solve the Einstein field equations and the junction conditions exactly. This exact solution contains the Friedmann dust solution as a limiting case. We briefly consider the radiative transfer within the framework of extended irreversible thermodynamics and show that relaxational effects significantly alter the temperature profiles.


2012 ◽  
Vol 60 (2) ◽  
pp. 259-263 ◽  
Author(s):  
J.F. Ganghoffer

Abstract. The volumetric and surface growth of continuum solid bodies is considered, in the framework of the thermodynamics of open systems exchanging mass, work and chemical species (nutrients) with their environment. More specifically, we address the issue of setting up extremum principles for such growing bodies. A general three-field variational principle is set up, based on the so-called zero potential, which is a byproduct of the grand potential. The stationnarity conditions of those potentials deliver balance laws for generalized volumetric and surface Eshelby tensors, leading further to the identification of the material forces for growth.


1950 ◽  
Vol 2 ◽  
pp. 427-439 ◽  
Author(s):  
Max Wyman

Introduction. In a recent unified theory originated by Einstein and Straus [l], the gravitational and electromagnetic fields are represented by a single nonsymmetric tensor gy which is a function of four coordinates xr(r = 1, 2, 3, 4). In addition a non-symmetric linear connection Γjki is assumed for the space and a Hamiltonian function is defined in terms of gij and Γjki. By means of a variational principle in which the gij and Γjki are allowed to vary independently the field equations are obtained and can be written(0.1)(0.2)(0.3)(0.4)


1994 ◽  
Vol 03 (03) ◽  
pp. 639-645
Author(s):  
L.K. PATEL ◽  
LAKSHMI S. DESAI

A class of nonstatic inhomogeneous plane-symmetric solutions of Einstein field equations is obtained. The source for these solutions is a viscous fluid with heat flow. The fluid flow is irrotational and it has nonzero expansion, shear and acceleration. All these solutions have a big-bang singularity. The matter-free limit of the solutions is the well-known Kasner vacuum solution. Some physical features of the solutions are briefly discussed.


2020 ◽  
pp. 1-50
Author(s):  
MARK F. DEMERS ◽  
MIKE TODD

We consider multimodal maps with holes and study the evolution of the open systems with respect to equilibrium states for both geometric and Hölder potentials. For small holes, we show that a large class of initial distributions share the same escape rate and converge to a unique absolutely continuous conditionally invariant measure; we also prove a variational principle connecting the escape rate to the pressure on the survivor set, with no conditions on the placement of the hole. Finally, introducing a weak condition on the centre of the hole, we prove scaling limits for the escape rate for holes centred at both periodic and non-periodic points, as the diameter of the hole goes to zero.


2017 ◽  
Vol 72 (4) ◽  
pp. 365-374 ◽  
Author(s):  
Gauranga Charan Samanta ◽  
Ratbay Myrzakulov ◽  
Parth Shah

Abstract:The authors considered the bulk viscous fluid in f(R, T) gravity within the framework of Kaluza–Klein space time. The bulk viscous coefficient (ξ) expressed as $\xi = {\xi _0} + {\xi _1}{{\dot a} \over a} + {\xi _2}{{\ddot a} \over {\dot a}},$ where ξ0, ξ1, and ξ2 are positive constants. We take p=(γ−1)ρ, where 0≤γ≤2 as an equation of state for perfect fluid. The exact solutions to the corresponding field equations are given by assuming a particular model of the form of f(R, T)=R+2f(T), where f(T)=λT, λ is constant. We studied the cosmological model in two stages, in first stage: we studied the model with no viscosity, and in second stage: we studied the model involve with viscosity. The cosmological model involve with viscosity is studied by five possible scenarios for bulk viscous fluid coefficient (ξ). The total bulk viscous coefficient seems to be negative, when the bulk viscous coefficient is proportional to ${\xi _2}{{\ddot a} \over {\dot a}},$ hence, the second law of thermodynamics is not valid; however, it is valid with the generalised second law of thermodynamics. The total bulk viscous coefficient seems to be positive, when the bulk viscous coefficient is proportional to $\xi = {\xi _1}{{\dot a} \over a},$$\xi = {\xi _1}{{\dot a} \over a} + {\xi _2}{{\ddot a} \over {\dot a}}$ and $\xi = {\xi _0} + {\xi _1}{{\dot a} \over a} + {\xi _2}{{\ddot a} \over {\dot a}},$ so the second law of thermodynamics and the generalised second law of thermodynamics is satisfied throughout the evolution. We calculate statefinder parameters of the model and observed that it is different from the ∧CDM model. Finally, some physical and geometrical properties of the models are discussed.


2009 ◽  
Vol 24 (28n29) ◽  
pp. 5319-5340 ◽  
Author(s):  
DENIS KOCHAN

A novel method for quantization of non-Lagrangian (open) systems is proposed. It is argued that the essential object, which provides both classical and quantum evolution, is a certain canonical two-form defined in extended velocity space. In this setting classical dynamics is recovered from the stringy-type variational principle, which employs umbilical surfaces instead of histories of the system. Quantization is then accomplished in accordance with the introduced variational principle. The path integral for the transition probability amplitude (propagator) is rearranged to a surface functional integral. In the standard case of closed (Lagrangian) systems the presented method reduces to the standard Feynman's approach. The inverse problem of the calculus of variation, the problem of quantization ambiguity and the quantum mechanics in the presence of friction are analyzed in detail.


2013 ◽  
Vol 10 (06) ◽  
pp. 1350019 ◽  
Author(s):  
CARLOS CASTRO

A rigorous construction of Clifford-space (C-space) gravity is presented which is compatible with the Clifford algebraic structure and permits the derivation of the expressions for the connections with torsion in C-spaces. The C-space generalized gravitational field equations are derived from a variational principle based on the extension of the Einstein–Hilbert–Cartan action. We continue by arguing how Lanczos–Lovelock–Cartan (LLC) higher curvature gravity with torsion can be embedded into gravity in C-spaces and suggest how this might also occur for extended gravitational theories based on f(R), f(Rμν), … actions, for polynomial-valued functions. In essence, the LLC curvature tensors appear as Ricci-like traces of certain components of the C-space curvatures. Torsional gravity is related to higher-order corrections of the bosonic string-effective action. In the torsionless case, black-strings and black-brane metric solutions in higher dimensions D > 4 play an important role in finding specific examples of solutions to LL gravity.


Sign in / Sign up

Export Citation Format

Share Document