The axisymmetric flow field induced by a point force in the presence of a plane wall

In this paper we consider a numerically constructed solution concerning the steady nonlinear flow field generated by a point force of magnitude F 0 in an incompressible fluid bounded by a plane wall. The force is applied at a fixed distance from the wall and is perpendicular to it. The streamlines in a meridian section form closed loops which nest at a stagnation point and it is found that as F 0 increases this stagnation point is displaced towards or away from the wall depending on whether the force is pointing towards or away from it. It is also found that as F 0 increases the total volume flux per unit force decreases when the force is pointing towards the wall and increases when the force is pointing in the opposite direction. For instance when F 0 is 150 v 2 ρ , where v denotes the coefficient of kinematic viscosity and ρ the fluid density, the total volume flux for the case where the force points away from the wall is several times that for the case where the force points towards the wall.

A nonlinear solution is constructed representing the steady flow field generated by the continuous application of a constant point force of magnitude F 0 in an incompressible fluid that is bounded by a fixed plane wall. The force is applied at a fixed distance from the wall, is perpendicular to the wall and directed towards it. The streamlines in a meridian section form closed loops which nest at a stagnation point and it is found that as F 0 increases this stagnation point is displaced towards the wall. It is also found that as F 0 increases the total volume flow per unit force decreases.


1976 ◽  
Vol 73 (4) ◽  
pp. 641-650 ◽  
Author(s):  
C. Sozou ◽  
W. M. Pickering

In this paper we consider the flow field induced in an incompressible viscous conducting fluid in a hemispherical bowl by a symmetric discharge of electric current from a point source at the centre of the plane end of the hemisphere. This plane end is a free surface. We construct an analytic solution for the slow viscous flow and a numeriacl solution for the nonlinear problem. The streamlines in an axial cross-section form two sets of closed loops, one on either side of the axis. Our computations indicate that, for a given fluid, when the discharged current reaches a certain magnitude the velocity field breaks down. This breakdown probably originates at the vertex of the hemispherical container.


1979 ◽  
Vol 91 (3) ◽  
pp. 541-546 ◽  
Author(s):  
C. Sozou

By means of similarity principles an analytical solution is constructed for the development of the linear flow field due to the instantaneous application of a constant point force in an infinite liquid. If the force is applied at the origin O and if ν denotes distance from O, ν denotes the coefficient of kinematic viscosity of the fluid and t the time from the application of the force, the solution constructed exhibits the following features. Initially the flow field set up has a dipole structure with centre at O and axis along the direction of the impressed force. At a station r this dipole structure persists so long as 4νt [Lt ] r2. In an axial cross-section the field lines form two sets of closed loops about two stagnation points in the equatorial plane. The stagnation points occur at r = 1.76(νt)½ and thus propagate to infinity with speed 0.88(ν/t)½. The steady state is reached algebraically.


1975 ◽  
Vol 70 (3) ◽  
pp. 509-517 ◽  
Author(s):  
C. Sozou ◽  
W. M. Pickering

The development of the magnetohydrodynamic flow field due to the discharge of an electric current J0 from a point on a plate bounding a semi-infinite viscous incompressible conducting fluid is considered. The flow field is the response of the fluid to the Lorentz force set up by the electric current and the associated magnetic field. The problem is formulated in terms of the dimensionless variable (vt)½/r and solved numerically. Here ν is the coefficient of kinematic viscosity, t the time from the application of the electric current and r the distance from the discharge. It is shown that the streamlines of the developing flow field in a cross-section through the axis of the discharge are closed loops about a stagnation point. As the flow field develops, the stagnation point moves to infinity along a ray emanating from the discharge with a speed proportional to t−½. The steady state, within a distance r from the discharge, is practically established when t = r2/ν.


1977 ◽  
Vol 80 (4) ◽  
pp. 673-683 ◽  
Author(s):  
C. Sozou ◽  
W. M. Pickering

The development of the flow field of a jet emanating from a point source of momentum in an infinite incompressible fluid of density σ is considered. The flow field is assumed to be due to the application of a constant force F0 at the origin. The problem is formulated in terms of the dimensionless variable λ = (vt)½/r, where v is the kinematic viscosity of the fluid, t the time from the application of the force and r the distance from the origin. At a station r the flow field is dipolar, with the dipole axis in the direction of F0, for all t satisfying the inequalities vt Lt; r2 and F0t2 [Lt ] 4πρr4. Also, at a given time t the streamlines of the developing flow field in a section through the axis of symmetry of the problem form closed loops about a stagnation point. If this occurs at λ = λm, the stagnation point propagates to infinity, along a straight line emanating from the origin, with speed v½/2λmt½, where λm = λm(F0) decreases as F0 increases. The larger F0 is the faster the steady state is established.


1990 ◽  
Author(s):  
A. Kirschner ◽  
H. Stoff

A cascade design-method is presented which complements the meridional through-flow design procedure of turbomachines. Starting from an axisymmetric flow field and the streamline geometry in the meridional plane this simple method produces a solution for the quasi three-dimensional flow field and the blade-element geometry on corresponding stream surfaces. In addition, it provides intra-blade data on loss and turning required for a consistent design and a convenient means of optimizing blade loading. The purpose of this paper is to describe the theoretical basis of the method and to illustrate its application in the design of transonic compressors.


2020 ◽  
Vol 7 (3) ◽  
pp. 597-610 ◽  
Author(s):  
Tian Zhang ◽  
Deji Jing ◽  
Shaocheng Ge ◽  
Jiren Wang ◽  
Xiangxi Meng ◽  
...  

Abstract To simulate the transonic atomization jet process in Laval nozzles, to test the law of droplet atomization and distribution, to find a method of supersonic atomization for dust-removing nozzles, and to improve nozzle efficiency, the finite element method has been used in this study based on the COMSOL computational fluid dynamics module. The study results showed that the process cannot be realized alone under the two-dimensional axisymmetric, three-dimensional and three-dimensional symmetric models, but it can be calculated with the transformation dimension method, which uses the parameter equations generated from the two-dimensional axisymmetric flow field data of the three-dimensional model. The visualization of this complex process, which is difficult to measure and analyze experimentally, was realized in this study. The physical process, macro phenomena and particle distribution of supersonic atomization are analyzed in combination with this simulation. The rationality of the simulation was verified by experiments. A new method for the study of the atomization process and the exploration of its mechanism in a compressible transonic speed flow field based on the Laval nozzle has been provided, and a numerical platform for the study of supersonic atomization dust removal has been established.


1995 ◽  
Vol 302 ◽  
pp. 45-63 ◽  
Author(s):  
W. S. J. Uijttewaal ◽  
E. J. Nijhof

A fluid droplet subjected to shear flow deforms and rotates in the flow. In the presence of a wall the droplet migrates with respect to a material element in the undisturbed flow field. Neglecting fluid inertia, the Stakes problem for the droplet is solved using a boundary integral technique. It is shown how the time-dependent deformation, orientation, circulation and droplet viscosity. The migration velocities are calculated in the directions parallel and perpendicular to the wall, and compared with theoretical models and expeeriments. The results reveal some of the shortcomings of existiong models although not all diserepancies between our calculations and known experiments could be clarified.


2008 ◽  
Vol 22 (1) ◽  
pp. 166-170 ◽  
Author(s):  
Byeung Jun Lim ◽  
Seung Jin Song

Sign in / Sign up

Export Citation Format

Share Document