Microwave heating of materials with low conductivity

The microwave heating of a one-dimensional, semi-infinite material with low conductivity is considered. Starting from Maxwell’s equations, it is shown that this heating is governed by a coupled system consisting of the damped wave equation and a forced heat equation with forcing depending on the amplitude squared of the electric field. For simplicity, the conductivity of the material and the speed of microwave radiation in the material are assumed to have power law dependencies on temperature. Approximate analytical solutions of the governing equations are found as a slowly varying wave. These solutions and the slow equations from which they are derived are found to give criteria for when ‘hotspots' (regions of very high temperature relative to their surroundings) can form. The approximate analytical solutions are compared with numerical solutions of the governing equations.

2012 ◽  
Vol 1475 ◽  
Author(s):  
T. Ohi ◽  
T. Chiba ◽  
T. Nakagawa ◽  
T. Takase ◽  
T. Nakazawa ◽  
...  

ABSTRACTTo perform a safety assessment for the geological disposal of radioactive waste, it is important to understand the response characteristics of the disposal system. In this study, approximate analytical solutions for steady-state nuclide releases from the engineered barrier system (EBS) of a repository were derived for an orthogonal one-dimensional diffusion model. In these approximate analytical solutions, inventory depletion, decay during migration and the influence of groundwater flow in the excavation damaged zone (EDZ) were considered. These solutions were simplified by the Taylor theorem in order to clearly represent the response characteristics of the EBS. The validity of these solutions was shown by comparison with numerical solutions. The response characteristics of the EBS are useful for identifying target values for important parameters that would have the effect of improving the robustness of system safety. The robustness of the geological disposal system and the reliability of the safety assessment can thus potentially be improved using the approximate analytical solutions.


2019 ◽  
Vol 24 (1) ◽  
pp. 199-211
Author(s):  
M. Yürüsoy ◽  
Ö.F. Güler

Abstract The steady-state magnetohydrodynamics (MHD) flow of a third-grade fluid with a variable viscosity parameter between concentric cylinders (annular pipe) with heat transfer is examined. The temperature of annular pipes is assumed to be higher than the temperature of the fluid. Three types of viscosity models were used, i.e., the constant viscosity model, space dependent viscosity model and the Reynolds viscosity model which is dependent on temperature in an exponential manner. Approximate analytical solutions are presented by using the perturbation technique. The variation of velocity and temperature profile in the fluid is analytically calculated. In addition, equations of motion are solved numerically. The numerical solutions obtained are compared with analytical solutions. Thus, the validity intervals of the analytical solutions are determined.


2018 ◽  
Vol 45 (2) ◽  
pp. 253-278 ◽  
Author(s):  
Meraj Alam ◽  
Bibaswan Dey ◽  
Sekhar Raja

In this article, we present a biphasic mixture theory based mathematical model for the hydrodynamics of interstitial fluid motion and mechanical behavior of the solid phase inside a solid tumor. The tumor tissue considered here is an isolated deformable biological medium. The solid phase of the tumor is constituted by vasculature, tumor cells, and extracellular matrix, which are wet by a physiological extracellular fluid. Since the tumor is deformable in nature, the mass and momentum equations for both the phases are presented. The momentum equations are coupled due to the interaction (or drag) force term. These governing equations reduce to a one-way coupled system under the assumption of infinitesimal deformation of the solid phase. The well-posedness of this model is shown in the weak sense by using the inf-sup (Babuska?Brezzi) condition and Lax?Milgram theorem in 2D and 3D. Further, we discuss a one-dimensional spherical symmetry model and present some results on the stress fields and energy of the system based on ??2 and Sobolev norms. We discuss the so-called phenomena of ?necrosis? inside a solid tumor using the energy of the system.


1962 ◽  
Vol 2 (03) ◽  
pp. 225-256 ◽  
Author(s):  
G. Rowan ◽  
M.W. Clegg

Abstract The basic equations for the flow of gases, compressible liquids and incompressible liquids are derived and the full implications of linearising then discussed. Approximate solutions of these equations are obtained by introducing the concept of a disturbed zone around the well, which expands outwards into the reservoir as fluid is produced. Many important and well-established results are deduced in terms of simple functions rather than the infinite series, or numerical solutions normally associated with these problems. The wide range of application of this approach to transient radial flow problems is illustrated with many examples including; gravity drainage of depletion-type reservoirs; multiple well systems; well interference. Introduction A large number of problems concerning the flow of fluids in oil reservoirs have been solved by both analytical and numerical methods but in almost all cases these solutions have some disadvantages - the analytical ones usually involve rather complex functions (infinite series or infinite integrals) which are difficult to handle, and the numerical ones tend to mask the physical principles underlying the problem. It would seem appropriate, therefore, to try to find approximate analytical solutions to these problems without introducing any further appreciable errors, so that the physical nature of the problem is retained and solutions of comparable accuracy are obtained. One class of problems will be considered in this paper, namely, transient radial flow problems, and it will be shown that approximate analytical solutions of the equations governing radial flow can be obtained, and that these solutions yield comparable results to those calculated numerically and those obtained from "exact" solutions. It will also be shown that the restrictions imposed upon the dependent variable (pressure) are just those which have to be assumed in deriving the usual diffusion-type equations. The method was originally suggested by Guseinov, whopostulated a disturbed zone in the reservoir, the radius of which increases with time, andreplaced the time derivatives in the basic differential equation by its mean value in the disturbed zone. In this paper it is proposed to review the basic theory leading to the equations governing the flow of homogeneous fluids in porous media and to consider the full implications of the approximation introduced in linearising them. The Guseinov-type approximation will then be applied to these equations and the solutions for the flow of compressible and incompressible fluids, and gases in bounded and infinite reservoirs obtained. As an example of the application of this type of approximation, solutions to such problems as production from stratified reservoirs, radial permeability discontinuities; multiple-well systems, and well interference will be given. These solutions agree with many other published results, and in some cases they may be extended to more complex problems without the computational difficulties experienced by other authors. THEORY In order to review the basic theory from a fairly general standpoint it is proposed to limit the idealising assumptions to the minimum necessary for analytical convenience. The assumptions to be made are the following:That the flow is irrotational.That the formation is of constant thickness.Darcy's Law is valid.The formation is saturated with a single homogeneous fluid. SPEJ P. 225^


2021 ◽  
pp. 2150036
Author(s):  
A. G. Davodi ◽  
H. Rezazadeh ◽  
Waleed Adel ◽  
A. Bekir ◽  
D. D. Ganji

This paper examines the fluctuation and frequency of the motion of a homogeneous solid on a horizontal plane on an exponential crisscross spring. The governing equations of this oscillator are investigated using a modified Homotopy Perturbation method, Energy balance method and artificial parameter–Linstedt–Poincare’ method. A comparison of solutions shows that the fluctuation and frequency of the system solved by the presented methods are effective with a minor error of 0.1%.


Open Physics ◽  
2011 ◽  
Vol 9 (1) ◽  
Author(s):  
Erik Sweet ◽  
Kuppalapalle Vajravelu ◽  
Robert Gorder

AbstractIn this paper we investigate the three-dimensional magnetohydrodynamic (MHD) rotating flow of a viscous fluid over a rotating sphere near the equator. The Navier-Stokes equations in spherical polar coordinates are reduced to a coupled system of nonlinear partial differential equations. Self-similar solutions are obtained for the steady state system, resulting from a coupled system of nonlinear ordinary differential equations. Analytical solutions are obtained and are used to study the effects of the magnetic field and the suction/injection parameter on the flow characteristics. The analytical solutions agree well with the numerical solutions of Chamkha et al. [31]. Moreover, the obtained analytical solutions for the steady state are used to obtain the unsteady state results. Furthermore, for various values of the temporal variable, we obtain analytical solutions for the flow field and present through figures.


1989 ◽  
Vol 42 (1) ◽  
pp. 144-150
Author(s):  
J. O. Flower

de Wit has produced an analysis of the apparent spontaneous yaw of a ship when undergoing combined rolling and pitching. This analysis produces a set of four first-order simultaneous differential equations which govern the motion. In de Wit the numerical solutions of these equations for a couple of representative examples are given, as well as the corresponding analytical solutions to the linearized equations. In this communication it is shown how two of the four equations can be solved analytically; these solutions can be used to obtain approximate analytical solutions to the remaining two equations.


2013 ◽  
Vol 444-445 ◽  
pp. 786-790
Author(s):  
Cheng Li Zhang ◽  
Yun Zeng

Lorenz system families contain Lorenz system, Chen system and Lu system, their accurate analytical solutions are not yet obtained now. The segmenting recursion method was put forward in this paper, the equations of Lorenz system families were reasonably linearized within small segment, the recursion formulas were obtained by solving the approximate analytical solutions within small segment, and all numerical solutions were got by the recursion formulas. The chaotic motion of Lorenz system families were numerically simulated by means of the segmenting recursion method, the simulation results were compared with Runge-Kutta method. The comparative results show that the segmenting recursion method is very effective to numerically simulate Lorenz system families, not only method is simple, programming is easy, but result is accurate. this method is a universal new method to numerically simulate similar system.


Sign in / Sign up

Export Citation Format

Share Document