scholarly journals Rayleigh–Bénard magnetoconvection with temperature modulation

Author(s):  
Suparna Hazra ◽  
Krishna Kumar ◽  
Saheli Mitra

Floquet analysis of modulated magnetoconvection in Rayleigh–Bénard geometry is performed. A sinusoidally varying temperature is imposed on the lower plate. As Rayleigh number Ra is increased above a critical value Ra o , the oscillatory magnetoconvection begins. The flow at the onset of magnetoconvection may oscillate either subhar- monically or harmonically with the external modulation. The critical Rayleigh number Ra o varies non-monotonically with the modulation frequency ω for appreciable value of the modulation amplitude a . The temperature modulation may either postpone or prepone the appearance of magnetoconvection. The magnetoconvective flow always oscillates harmonically at larger values of ω . The threshold Ra o and the corresponding wavenumber k o approach to their values for the stationary magnetoconvection in the absence of modulation ( a  = 0), as ω  → ∞. Two different zones of harmonic instability merge to form a single instability zone with two local minima for higher values of Chandrasekhar’s number Q , which is qualitatively new. We have also observed a new type of bicritical point, which involves two different sets of harmonic oscillations. The effects of variation of Q and Pr on the threshold Ra o and critical wavenumber k o are also investigated.

2012 ◽  
Vol 713 ◽  
pp. 216-242 ◽  
Author(s):  
Jun Hu ◽  
Daniel Henry ◽  
Xie-Yuan Yin ◽  
Hamda BenHadid

AbstractThree-dimensional Rayleigh–Bénard instabilities in binary fluids with Soret effect are studied by linear biglobal stability analysis. The fluid is confined transversally in a duct and a longitudinal throughflow may exist or not. A negative separation factor $\psi = \ensuremath{-} 0. 01$, giving rise to oscillatory transitions, has been considered. The numerical dispersion relation associated with this stability problem is obtained with a two-dimensional Chebyshev collocation method. Symmetry considerations are used in the analysis of the results, which allow the classification of the perturbation modes as ${S}_{l} $ modes (those which keep the left–right symmetry) or ${R}_{x} $ modes (those which keep the symmetry of rotation of $\lrm{\pi} $ about the longitudinal mid-axis). Without throughflow, four dominant pairs of travelling transverse modes with finite wavenumbers $k$ have been found. Each pair corresponds to two symmetry degenerate left and right travelling modes which have the same critical Rayleigh number ${\mathit{Ra}}_{c} $. With the increase of the duct aspect ratio $A$, the critical Rayleigh numbers for these four pairs of modes decrease and closely approach the critical value ${\mathit{Ra}}_{c} = 1743. 894$ obtained in a two-dimensional situation, one of the mode (a ${S}_{l} $ mode called mode A) always remaining the dominant mode. Oscillatory longitudinal instabilities ($k\approx 0$) corresponding to either ${S}_{l} $ or ${R}_{x} $ modes have also been found. Their critical curves, globally decreasing, present oscillatory variations when the duct aspect ratio $A$ is increased, associated with an increasing number of longitudinal rolls. When a throughflow is applied, the symmetry degeneracy of the pairs of travelling transverse modes is broken, giving distinct upstream and downstream modes. For small and moderate aspect ratios $A$, the overall critical Rayleigh number in the small Reynolds number range studied is only determined by the upstream transverse mode A. In contrast, for larger aspect ratios as $A= 7$, different modes are successively dominant as the Reynolds number is increased, involving both upstream and downstream transverse modes A and even the longitudinal mode.


2018 ◽  
Vol 846 ◽  
pp. 5-36 ◽  
Author(s):  
Stéphane Labrosse ◽  
Adrien Morison ◽  
Renaud Deguen ◽  
Thierry Alboussière

Solid-state convection can take place in the rocky or icy mantles of planetary objects, and these mantles can be surrounded above or below or both by molten layers of similar composition. A flow towards the interface can proceed through it by changing phase. This behaviour is modelled by a boundary condition taking into account the competition between viscous stress in the solid, which builds topography of the interface with a time scale $\unicode[STIX]{x1D70F}_{\unicode[STIX]{x1D702}}$, and convective transfer of the latent heat in the liquid from places of the boundary where freezing occurs to places of melting, which acts to erase topography, with a time scale $\unicode[STIX]{x1D70F}_{\unicode[STIX]{x1D719}}$. The ratio $\unicode[STIX]{x1D6F7}=\unicode[STIX]{x1D70F}_{\unicode[STIX]{x1D719}}/\unicode[STIX]{x1D70F}_{\unicode[STIX]{x1D702}}$ controls whether the boundary condition is the classical non-penetrative one ($\unicode[STIX]{x1D6F7}\rightarrow \infty$) or allows for a finite flow through the boundary (small $\unicode[STIX]{x1D6F7}$). We study Rayleigh–Bénard convection in a plane layer subject to this boundary condition at either or both its boundaries using linear and weakly nonlinear analyses. When both boundaries are phase-change interfaces with equal values of $\unicode[STIX]{x1D6F7}$, a non-deforming translation mode is possible with a critical Rayleigh number equal to $24\unicode[STIX]{x1D6F7}$. At small values of $\unicode[STIX]{x1D6F7}$, this mode competes with a weakly deforming mode having a slightly lower critical Rayleigh number and a very long wavelength, $\unicode[STIX]{x1D706}_{c}\sim 8\sqrt{2}\unicode[STIX]{x03C0}/3\sqrt{\unicode[STIX]{x1D6F7}}$. Both modes lead to very efficient heat transfer, as expressed by the relationship between the Nusselt and Rayleigh numbers. When only one boundary is subject to a phase-change condition, the critical Rayleigh number is $\mathit{Ra}_{c}=153$ and the critical wavelength is $\unicode[STIX]{x1D706}_{c}=5$. The Nusselt number increases approximately two times faster with the Rayleigh number than in the classical case with non-penetrative conditions, and the average temperature diverges from $1/2$ when the Rayleigh number is increased, towards larger values when the bottom boundary is a phase-change interface.


1970 ◽  
Vol 42 (1) ◽  
pp. 161-175 ◽  
Author(s):  
D. R. Caldwell

Observations of temperature drop as a function of heat flow in Rayleigh–Bénard convection with curved density profiles show: (1) reversal of slope in the heating curve, (2) oscillations with time, (3) history dependence, and (4) an increase in critical Rayleigh number as the curvature of the density profile is increased. Some of the results are quite similar to the predictions of Busse.


2001 ◽  
Vol 434 ◽  
pp. 243-271 ◽  
Author(s):  
J. RAYMOND LEE SKARDA

Gravity modulation of an unbounded fluid layer with surface tension variations along its free surface is investigated. The stability of such systems is often characterized in terms of the wavenumber, α and the Marangoni number, Ma. In (α, Ma) parameter space, modulation has a destabilizing effect on the unmodulated neutral stability curve for large Prandtl number, Pr, and small modulation frequency, Ω, while a stabilizing effect is observed for small Pr and large Ω. As Ω → ∞ the modulated neutral stability curves approach the unmodulated neutral stability curve. At certain values of Pr and Ω, multiple minima are observed and the neutral stability curves become highly distorted. Closed regions of subharmonic instability are also observed. In (1/Ω, g1Ra)-space, where g1 is the relative modulation amplitude, and Ra is the Rayleigh number, alternating regions of synchronous and subharmonic instability separated by thin stable regions are observed. However, fundamental differences between the stability boundaries occur when comparing the modulated Marangoni–Bénard and Rayleigh–Bénard problems. Modulation amplitudes at which instability tongues occur are strongly influenced by Pr, while the fundamental instability region is weakly affected by Pr. For large modulation frequency and small amplitude, empirical relations are derived to determine modulation effects. A one-term Galerkin approximation was also used to reduce the modulated Marangoni–Bénard problem to a Mathieu equation, allowing qualitative stability behaviour to be deduced from existing tables or charts, such as Strutt diagrams. In addition, this reduces the parameter dependence of the problem from seven transport parameters to three Mathieu parameters, analogous to parameter reductions of previous modulated Rayleigh–Bénard studies. Simple stability criteria, valid for small parameter values (amplitude and damping coefficients), were obtained from the one-term equations using classical method of averaging results.


2017 ◽  
Vol 817 ◽  
pp. 264-305 ◽  
Author(s):  
Thierry Alboussière ◽  
Yanick Ricard

The linear stability threshold of the Rayleigh–Bénard configuration is analysed with compressible effects taken into account. It is assumed that the fluid under investigation obeys a Newtonian rheology and Fourier’s law of thermal transport with constant, uniform (dynamic) viscosity and thermal conductivity in a uniform gravity field. Top and bottom boundaries are maintained at different constant temperatures and we consider here mechanical boundary conditions of zero tangential stress and impermeable walls. Under these conditions, and with the Boussinesq approximation, Rayleigh (Phil. Mag., vol. 32 (192), 1916, pp. 529–546) first obtained analytically the critical value $27\unicode[STIX]{x03C0}^{4}/4$ for a dimensionless parameter, now known as the Rayleigh number, at the onset of convection. This paper describes the changes of the critical Rayleigh number due to the compressibility of the fluid, measured by the dimensionless dissipation parameter ${\mathcal{D}}$ and due to a finite temperature difference between the hot and cold boundaries, measured by a dimensionless temperature gradient $a$. Different equations of state are examined: ideal gas equation, Murnaghan’s model (often used to describe the interiors of solid but convective planets) and a generic equation of state with adjustable parameters, which can represent any possible equation of state. In the perspective to assess approximations often made in convective models, we also consider two variations of this stability analysis. In a so-called quasi-Boussinesq model, we consider that density perturbations are solely due to temperature perturbations. In a so-called quasi-anelastic liquid approximation model, we consider that entropy perturbations are solely due to temperature perturbations. In addition to the numerical Chebyshev-based stability analysis, an analytical approximation is obtained when temperature fluctuations are written as a combination of only two modes, one being the original symmetrical (between top and bottom) mode introduced by Rayleigh, the other one being antisymmetrical. The analytical solution allows us to show that the antisymmetrical part of the critical eigenmode increases linearly with the parameters $a$ and ${\mathcal{D}}$, while the superadiabatic critical Rayleigh number departs quadratically in $a$ and ${\mathcal{D}}$ from $27\unicode[STIX]{x03C0}^{4}/4$. For any arbitrary equation of state, the coefficients of the quadratic departure are determined analytically from the coefficients of the expansion of density up to degree three in terms of pressure and temperature.


2021 ◽  
Vol 88 (1-2) ◽  
pp. 08
Author(s):  
A. S. Aruna ◽  
V. Ramachandramurthy ◽  
N. Kavitha

The present paper aims at weak non-linear stability analysis followed by linear analysis of nite-amplitude Rayleigh-Benard magneto convection problem in an electrically conducting Newtonian liquid with heat source/sink. It is shown that the internal Rayleigh number, ther- morheological parameter, and the Chandrasekhar number in uence the onset of convection. The generalized Lorenz model derived for the prob- lem is essentially the classical Lorenz model but with some coecient depending on the variable heat source (sink), viscosity, and the applied magnetic eld. The result of the parameters' in uence on the critical Rayleigh number explains their in uence on the Nusselt number. It is found that an increasing strength of the magnetic eld is to stabilize the system and diminishes heat transport whereas the heat source and variable viscosity in-tandem to work system unstable and enhances heat transfer.


2004 ◽  
Vol 2004 (19) ◽  
pp. 991-1001 ◽  
Author(s):  
B. S. Bhadauria ◽  
Lokenath Debnath

The linear stability of a horizontal layer of fluid heated from below and above is considered. In addition to a steady temperature difference between the walls of the fluid layer, a time-dependent periodic perturbation is applied to the wall temperatures. Only infinitesimal disturbances are considered. Numerical results for the critical Rayleigh number are obtained at various Prandtl numbers and for various values of the frequency. Some comparisons have been made with the known results.


2011 ◽  
Vol 673 ◽  
pp. 318-348 ◽  
Author(s):  
G. FREUND ◽  
W. PESCH ◽  
W. ZIMMERMANN

Motivated by recent experiments, we study a rich variation of the familiar Rayleigh–Bénard convection (RBC), where the temperature at the lower boundary varies sinusoidally about a mean value. As usual the Rayleigh number R measures the average temperature gradient, while the additional spatial modulation is characterized by a (small) amplitude δm and a wavevector qm. Our analysis relies on precise numerical solutions of suitably adapted Oberbeck–Boussinesq equations (OBE). In the absence of forcing (δm = 0), convection rolls with wavenumber qc bifurcate only for R above the critical Rayleigh number Rc. In contrast, for δm≠0, convection is unavoidable for any finite R; in the most simple case in the form of ‘forced rolls’ with wavevector qm. According to our first comprehensive stability diagram of these forced rolls in the qm – R plane, they develop instabilities against resonant oblique modes at R ≲ Rc in a wide range of qm/qc. Only for qm in the vicinity of qc, the forced rolls remain stable up to fairly large R > Rc. Direct numerical simulations of the OBE support and extend the findings of the stability analysis. Moreover, we are in line with the experimental results and also with some earlier theoretical results on this problem, based on asymptotic expansions in the limit δm → 0 and R → Rc. It is satisfying that in many cases the numerical results can be directly interpreted in terms of suitably constructed amplitude and generalized Swift–Hohenberg equations.


2021 ◽  
Vol 2057 (1) ◽  
pp. 012012
Author(s):  
A I Fedyushkin

Abstract The paper presents the results of a numerical study of convective heat transfer in a long horizontal layer heated from below with and without the vibration effect of the lower wall. The simulation was carried out on the basis of solving the Navier-Stokes 2D equations for an incompressible fluid in the Boussinesq approximation. It is shown that the influence of vibrations of the lower heated wall on the wave number of the convective flow roll structure, on the time and on the critical Rayleigh number of convection. The influence of controlled harmonic vibrations of wall on the structure of convective flow in the Rayleigh-Benard problem has been investigated. It is shown that the wave number of the periodic convective structure, the critical Rayleigh number, and the time of occurrence of Rayleigh-Benard convection under the vertical vibration effect on the horizontal layer from the lower wall are reduced.


Author(s):  
Saneshan Govender ◽  
Peter Vadasz

We investigate Rayleigh-Benard convection in a porous layer subjected to gravitational and Coriolis body forces, when the fluid and solid phases are not in local thermodynamic equilibrium. The Darcy model (extended to include Coriolis effects and anisotropic permeability) is used to describe the flow whilst the two-equation model is used for the energy equation (for the solid and fluid phases separately). The linear stability theory is used to evaluate the critical Rayleigh number for the onset of convection and the effect of both thermal and mechanical anisotropy on the critical Rayleigh number is discussed.


Sign in / Sign up

Export Citation Format

Share Document