scholarly journals Reconstructing a point source from diffusion fluxes to narrow windows in three dimensions

Author(s):  
U. Dobramysl ◽  
D. Holcman

We develop a computational approach to locate the source of a steady-state gradient of diffusing particles from the fluxes through narrow windows distributed either on the boundary of a three-dimensional half-space or on a sphere. This approach is based on solving the mixed boundary stationary diffusion equation with Neumann–Green’s function. The method of matched asymptotic expansions enables the computation of the probability fluxes. To explore the range of validity of this expansion, we develop a fast analytical-Brownian numerical scheme. This scheme accelerates the simulation time by avoiding the explicit computation of Brownian trajectories in the infinite domain. The results obtained from our derived analytical formulae and the fast numerical simulation scheme agree on a large range of parameters. Using the analytical representation of the particle fluxes, we show how to reconstruct the location of the point source. Furthermore, we investigate the uncertainty in the source reconstruction due to additive fluctuations present in the fluxes. We also study the influence of various window configurations: clustered versus uniform distributions on recovering the source position. Finally, we discuss possible applications for cell navigation in biology.

This paper presents a formulation of self-similar mixed boundary-value problems of elastodynamics that is a natural extension of one already developed by the writer for elastostatic problems. By thus exposing the analytical structure that is common to both the dynamic and static problems, the existence of properties common to certain static and dynamic problems is explained, and further such properties are derived. Common features of both two-dimensional and three-dimensional problems are brought out by reducing them to Hilbert problems, directly in two dimensions and by introducing the Radon transform in three dimensions. Several applications of the theory are presented, typical problems involving the indentation of a half-space by a conical or wedge-shaped indentor, and cracks expanding under the influence of a non-uniform applied stress. More difficult problems, that have not before been formulated, include dynamic indentation problems with adhesion, and problems of cracks expanding on interfaces between dissimilar materials. A method of solution of such problems is presented and an example of each type is worked out in detail. The method of analysis hinges upon representations of the solutions of ' unmixed ’ self-similar problems for half-spaces, which are obtained by use of an alternative to Cagniard’s technique whose application is routine, even for an anisotropic half-space. The representations provide more general solutions of the unmixed problems than were available previously. The main singularities, or ' arrivals ’, of the stress fields are extracted from the representations; these expressions are new and should be useful for certain problems in seismology. It is predicted, for instance, that a crack expanding on an interface can generate a ‘conical wave’, that is, a region in which the singularity has a logarithmic component as well as a step function, even in its P -wave arrival, which could not occur for a crack in a homogeneous medium. The properties of the equations of elastodynamics that are employed are that they are linear, homogeneous and self-adjoint and the methods that are developed are equally applicable to any other system with these properties.


2016 ◽  
Author(s):  
Ramraj Velmurugan ◽  
Jerry Chao ◽  
Sripad Ram ◽  
E. Sally Ward ◽  
Raimund J. Ober

AbstractMultifocal plane microscopy (MUM) can be used to visualize biological samples in three dimensions over large axial depths and provides for the high axial localization accuracy that is needed in applications such as the three-dimensional tracking of single particles and superresolution microscopy. This report analyzes the performance of intensity-based axial localization approaches as applied to MUM data using Fisher information calculations. In addition, a new non-parametric intensity-based axial location estimation method, Multi-Intensity Lookup Algorithm (MILA), is introduced that, unlike typical intensity-based methods that make use of a single intensity value per data image, utilizes multiple intensity values per data image in determining the axial location of a point source. MILA is shown to be robust against potential bias induced by differences in the sub-pixel location of the imaged point source. The method's effectiveness on experimental data is also evaluated.


Author(s):  
J. A. Eades ◽  
A. E. Smith ◽  
D. F. Lynch

It is quite simple (in the transmission electron microscope) to obtain convergent-beam patterns from the surface of a bulk crystal. The beam is focussed onto the surface at near grazing incidence (figure 1) and if the surface is flat the appropriate pattern is obtained in the diffraction plane (figure 2). Such patterns are potentially valuable for the characterization of surfaces just as normal convergent-beam patterns are valuable for the characterization of crystals.There are, however, several important ways in which reflection diffraction from surfaces differs from the more familiar electron diffraction in transmission.GeometryIn reflection diffraction, because of the surface, it is not possible to describe the specimen as periodic in three dimensions, nor is it possible to associate diffraction with a conventional three-dimensional reciprocal lattice.


1997 ◽  
Vol 84 (1) ◽  
pp. 176-178
Author(s):  
Frank O'Brien

The author's population density index ( PDI) model is extended to three-dimensional distributions. A derived formula is presented that allows for the calculation of the lower and upper bounds of density in three-dimensional space for any finite lattice.


1996 ◽  
Vol 33 (4-5) ◽  
pp. 233-240 ◽  
Author(s):  
F. S. Goderya ◽  
M. F. Dahab ◽  
W. E. Woldt ◽  
I. Bogardi

A methodology for incorporation of spatial variability in modeling non-point source groundwater nitrate contamination is presented. The methodology combines geostatistical simulation and unsaturated zone modeling for estimating the amount of nitrate loading to groundwater. Three dimensional soil nitrogen variability and 2-dimensional crop yield variability are used in quantifying potential benefits of spatially distributed nitrogen input. This technique, in combination with physical and chemical measurements, is utilized as a means of illustrating how the spatial statistical properties of nitrate leaching can be obtained for different scenarios of fixed and variable rate nitrogen applications.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Nima Afkhami-Jeddi ◽  
Henry Cohn ◽  
Thomas Hartman ◽  
Amirhossein Tajdini

Abstract We study the torus partition functions of free bosonic CFTs in two dimensions. Integrating over Narain moduli defines an ensemble-averaged free CFT. We calculate the averaged partition function and show that it can be reinterpreted as a sum over topologies in three dimensions. This result leads us to conjecture that an averaged free CFT in two dimensions is holographically dual to an exotic theory of three-dimensional gravity with U(1)c×U(1)c symmetry and a composite boundary graviton. Additionally, for small central charge c, we obtain general constraints on the spectral gap of free CFTs using the spinning modular bootstrap, construct examples of Narain compactifications with a large gap, and find an analytic bootstrap functional corresponding to a single self-dual boson.


2012 ◽  
Vol 696 ◽  
pp. 228-262 ◽  
Author(s):  
A. Kourmatzis ◽  
J. S. Shrimpton

AbstractThe fundamental mechanisms responsible for the creation of electrohydrodynamically driven roll structures in free electroconvection between two plates are analysed with reference to traditional Rayleigh–Bénard convection (RBC). Previously available knowledge limited to two dimensions is extended to three-dimensions, and a wide range of electric Reynolds numbers is analysed, extending into a fully inherently three-dimensional turbulent regime. Results reveal that structures appearing in three-dimensional electrohydrodynamics (EHD) are similar to those observed for RBC, and while two-dimensional EHD results bear some similarities with the three-dimensional results there are distinct differences. Analysis of two-point correlations and integral length scales show that full three-dimensional electroconvection is more chaotic than in two dimensions and this is also noted by qualitatively observing the roll structures that arise for both low (${\mathit{Re}}_{E} = 1$) and high electric Reynolds numbers (up to ${\mathit{Re}}_{E} = 120$). Furthermore, calculations of mean profiles and second-order moments along with energy budgets and spectra have examined the validity of neglecting the fluctuating electric field ${ E}_{i}^{\ensuremath{\prime} } $ in the Reynolds-averaged EHD equations and provide insight into the generation and transport mechanisms of turbulent EHD. Spectral and spatial data clearly indicate how fluctuating energy is transferred from electrical to hydrodynamic forms, on moving through the domain away from the charging electrode. It is shown that ${ E}_{i}^{\ensuremath{\prime} } $ is not negligible close to the walls and terms acting as sources and sinks in the turbulent kinetic energy, turbulent scalar flux and turbulent scalar variance equations are examined. Profiles of hydrodynamic terms in the budgets resemble those in the literature for RBC; however there are terms specific to EHD that are significant, indicating that the transfer of energy in EHD is also attributed to further electrodynamic terms and a strong coupling exists between the charge flux and variance, due to the ionic drift term.


Author(s):  
Jonna Nyman

Abstract Security shapes everyday life, but despite a growing literature on everyday security there is no consensus on the meaning of the “everyday.” At the same time, the research methods that dominate the field are designed to study elites and high politics. This paper does two things. First, it brings together and synthesizes the existing literature on everyday security to argue that we should think about the everyday life of security as constituted across three dimensions: space, practice, and affect. Thus, the paper adds conceptual clarity, demonstrating that the everyday life of security is multifaceted and exists in mundane spaces, routine practices, and affective/lived experiences. Second, it works through the methodological implications of a three-dimensional understanding of everyday security. In order to capture all three dimensions and the ways in which they interact, we need to explore different methods. The paper offers one such method, exploring the everyday life of security in contemporary China through a participatory photography project with six ordinary citizens in Beijing. The central contribution of the paper is capturing—conceptually and methodologically—all three dimensions, in order to develop our understanding of the everyday life of security.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Rodolfo Panerai ◽  
Antonio Pittelli ◽  
Konstantina Polydorou

Abstract We find a one-dimensional protected subsector of $$ \mathcal{N} $$ N = 4 matter theories on a general class of three-dimensional manifolds. By means of equivariant localization we identify a dual quantum mechanics computing BPS correlators of the original model in three dimensions. Specifically, applying the Atiyah-Bott-Berline-Vergne formula to the original action demonstrates that this localizes on a one-dimensional action with support on the fixed-point submanifold of suitable isometries. We first show that our approach reproduces previous results obtained on S3. Then, we apply it to the novel case of S2× S1 and show that the theory localizes on two noninteracting quantum mechanics with disjoint support. We prove that the BPS operators of such models are naturally associated with a noncom- mutative star product, while their correlation functions are essentially topological. Finally, we couple the three-dimensional theory to general $$ \mathcal{N} $$ N = (2, 2) surface defects and extend the localization computation to capture the full partition function and BPS correlators of the mixed-dimensional system.


2021 ◽  
Author(s):  
Roland Tormey

AbstractStudent-teacher relationships play an important role in both teacher and student experiences in higher education and have been found to be linked to learning, classroom management, and to student absenteeism. Although historically conceptualised in terms of immediacy or distance and measured with reference to behaviours, the growing recognition of the role of emotions and of power—as well as the development of a range of multidimensional models of social relationships—all suggest it is time to re-evaluate how student-teacher relationships are understood. This paper develops a theoretical model of student-teacher affective relationships in higher education based on three dimensions: affection/warmth, attachment/safety, and assertion/power. The three-dimensional model was tested using the Classroom Affective Relationships Inventory (CARI) with data from 851 students. The data supported the use of this multidimensional model for student-teacher relationships with both two- and three-dimensional models of relationships being identified as appropriate. The theoretical development of a multidimensional model and the empirical development of an instrument with which to explore these dimensions has important implications for higher education teachers, administrators and researchers.


Sign in / Sign up

Export Citation Format

Share Document