The structure of the yeast cell wall - I. Identification of charged groups at the surface

The electrophoretic mobility of various strains of Saccharomyces cerevisiae and S. carlsbergensis over the range pH 2 to 9 and at constant ionic strength ( I = 0.005) varies from about + 0·5 to — 1·5 µ , s -1 (V /cm ) -1 , values of an order indicating that the fraction of the cell surface occupied by ions is probably rather small. Both intact cells and the cell walls isolated from them behave similarly on electrophoresis and in a manner varying with the strain of yeast. It is the composition of the wall therefore which determines the electrophoretic properties. Two general effects (I and II) of change of pH on electrophoretic mobility were distinguished as characterizing certain strains of yeast, although in other cases they were encountered together. In the first type (I), the mobility was nearly independent of the pH and corresponded to a negative charge. As such charges were lacking from yeasts grown in media deficient in phosphate, and as the mobility of the isolated cell wall appeared to be directly related to its phosphorus content, the negative charge may be attributed to combined phosphate forming part of the fixed structure of the cell wall. In the second form of behaviour (II) the mobility varied continuously between pH 3 and 6, with an alteration in charge from positive to negative at about pH 4. In this case the charged groups are tentatively attributed to protein, as material of this nature was removed together, apparently, with the groups themselves when cell walls were treated with alkaline solutions.

1959 ◽  
Vol 12 (4) ◽  
pp. 395 ◽  
Author(s):  
J Dainty ◽  
AB Hope

Measurements of ion exchange were made between isolated cell walls of Ohara australis and an external solution. Comparison between intact cells and cell walls showed that nearly all the easily exchangeable cations are located in the cell wall. The wall is hown to consist of "water free space" (W.F.S.) and "Donnan free space" (D.F.S.); the concentration of in diffusible anions in the D.F.S. is about O� 6 equivjl. This finding is contrary to past suggestions that the D.F.S. is in the cytoplasm of plant cells.


1968 ◽  
Vol 3 (2) ◽  
pp. 273-294
Author(s):  
MARGARET J. THORNLEY ◽  
AUDREY M. GLAUERT

An electron-microscope study of thin sections and negatively stained preparations of intact cells and isolated cell walls of a bacterium which is moderately resistant to ionizing radiation, Acinetobacter strain 199A, showed that it is similar to other Gram-negative bacteria except for its mode of division and for the fine structure of some of the surface layers. During division the cells form a fairly thick septum similar to those observed in Gram-positive bacteria. An examination of the appearance and chemical composition of isolated cell walls before and after treatment with enzymes, detergents and lipid solvents revealed that three layers, each with a characteristic fine structure, are present in the cell wall: (1) an outer membrane with an array of peg-like subunits; (2) a layer of wrinkled material which is digested by proteolytic enzymes; and (3) a smooth, rigid layer, which contains the mucopeptide components of the cell wall. These observations are compared with the results of other workers for various Gram-negative bacteria. From comparisons with the structure of more radiation-sensitive strains of Acinetobacter, it appears that layer (2) may be associated with the radiation resistance of the organism.


1952 ◽  
Vol 96 (6) ◽  
pp. 569-580 ◽  
Author(s):  
Maclyn McCarty

Cell wall preparations of uniform chemical constitution have been obtained from several strains of group A streptococci. The isolated cell walls are dissolved by the same fractions of the Streptomyces albus enzymes that are effective in the lysis of intact cells, and it is likely that enzymatic lysis of group A streptococci is effected by an attack on the cell wall. The streptococcal cell wall, as prepared in this study, consists of approximately two-thirds carbohydrate and one-third protein. Small amounts of other components may be present. The carbohydrate component, which is composed primarily of N-acetyl-glucosamine and rhamnose, is the group-specific C carbohydrate. The evidence indicates that one of the streptomyces enzymes is directed toward the carbohydrate component of the cell wall.


1957 ◽  
Vol 106 (3) ◽  
pp. 365-384 ◽  
Author(s):  
Richard M. Krause

The host ranges of bacteriophages for group A, types 1, 6, 12, and 25 and group C streptococci have been determined. The findings indicate that the susceptibility to these phages is primarily a group-specific phenomenon, although it is modified by several factors such as the hyaluronic acid capsule, lysogeny, and possibly the presence of surface proteins. Phage antibody studies indicate that while the group A phages are antigenically related, they are distinct from the group C phage. This is in agreement with the observation that group A phages are not specific for their homologous streptococcal types. The purified group C carbohydrate inactivates group C phage but not the group A phages, thus suggesting that the carbohydrate, a component of the cell wall, may serve as the phage receptor site. It has not been possible to inactivate the group A phages with group A carbohydrate. Phage lysis of groups A and C streptococci is accompanied by fragmentation of the cell wall since the C carbohydrate has been identified serologically and chemically in the supernate of centrifuged lysates. The immediate lysis of groups A and C hemolytic streptococci and their isolated cell walls by an accesory heat-labile lytic factor in fresh group C lysates is also described.


1968 ◽  
Vol 14 (7) ◽  
pp. 809-811 ◽  
Author(s):  
Chiu-Sheng Wang ◽  
Marvin N. Schwalb ◽  
Philip G. Miles

Mechanically isolated cell walls of normal homokaryons and the morphological mutants thin and puff were fractionated and hydrolyzed by chemical procedures. The yields of fractionated materials and the glucose/hexosamine ratios of acid hydrolysates were determined. Results of statistical analyses of the values obtained from these determinations indicated that single-gene mutations causing the thin and puff mutant forms of this fungus produce specific differences in the composition of cell walls.


1959 ◽  
Vol 110 (6) ◽  
pp. 853-874 ◽  
Author(s):  
Earl H. Freimer ◽  
Richard M. Krause ◽  
Maclyn McCarty

L forms of Group A streptococci have been isolated by the use of penicillin gradient agar plates. Osmotically fragile protoplasts of Group A streptococci have been obtained by the use of Group C phage-associated lysin which lyses Group A streptococci and their isolated cell walls. Membranes surrounding these enzymatically derived protoplasts have been isolated, and chemical and immunological studies indicate that they are free of cell wall carbohydrate and M protein. The streptococcal protoplasts reproduce as colonies which are morphologically indistinguishable from streptococcal L forms. Evidence is presented to show that these two streptococcal derivatives are serologically and physiologically related to each other as well as to the parent streptococcal strain from which they were isolated.


1977 ◽  
Vol 89 (2) ◽  
pp. 327-340 ◽  
Author(s):  
E. Jane Morris ◽  
J. S. D. Bacon

SummaryThe digestibilities of grass cell wall constituents determined in a digestion trial were compared with those obtained by suspending various isolated cell wall preparations in nylon bags in the rumen of a sheep. Particular attention was paid to acetyl groups and to individual sugars, which were determined in both cases by gas liquid chromatography.For dried grass and hay in the digestion trial the cell wall constituents showed digestibilities decreasing in the following order: arabinose, galactose, glucose, xylose, acetyl, lignin.For a leaf cell wall preparation derived from all cell types except mesophyll, the nylon bag technique allowed the same order of digestibilities; rhamnose and uronic acids were also measured and found to be rapidly digested. Mesophyll cell walls placed in nylon bags were more readily digested than non-mesophyll. All the sugars, and also acetyl groups, were digested to the same extent.In a grass cell wall preparation isolated from sheep faeces, tested similarly, xylose and glucose were digested to the same extent, but acetyl groups were less digested.Removal of acetyl groups, using sodium ethoxide, which left the sugar composition and lignin content unchanged, increased the digestibility particularly of the cell walls from faeces.The results are discussed with reference to the relationship between cell wall composition and digestibility.


1962 ◽  
Vol 8 (5) ◽  
pp. 629-637
Author(s):  
K. L. Chung ◽  
Roma Z. Hawirko

From three species of Lactobacillus and three species of Streptococcus, cultured in a synthetic medium, cell walls were isolated following sonic disintegration and purified by washing. Sera against each species were prepared by injecting three rabbits with cell walls, and three with intact cells. Reciprocal agglutination tests were carried out with unabsorbed and absorbed antisera. More kinds of antibodies were detected with cell-wall antisera than with intact-cell antisera. Many species in the two genera shared common antigens. S. faecalis was the exception. Certain antigens believed to be complex haptens in nature reacted with heterologous antisera. Haemagglutination of tanned erythrocytes sensitized with a particulate cell-wall suspension showed fewer cross reactions than agglutination of intact-cell suspensions.The evidence presented shows the possibility of using antisera against species-specific cell-wall antigens for the identification of these species. The relationship of these species is discussed.


1990 ◽  
Vol 115 (1) ◽  
pp. 97-101 ◽  
Author(s):  
James W. Rushing ◽  
Donald J. Huber

Enzymically active cell wall isolated from mature-green and ripening tomato (Lycopersicon esculentum Mill cv. `Rutgers') fruit was employed to investigate the mobility of the enzyme polygalacturonase (PG, EC 3.2.1.15). Cell walls from mature-green `Rutgers' fruit or from the ripening mutant rin, which alone exhibits little or no release of pectin, were unaffected by the addition of enzymically active cell wall from ripening `Rutgers' fruit, indicating that PG is either not transferred at all or is not transferred to sites of pectin hydrolysis. The quantity of pectin released by the addition of soluble PG to enzymically active wall depended on the quantity of enzyme added. Similar data were obtained using purified PG2. Pectin solubilization from all wall isolates exhibiting enzymically mediated pectin release diminished with time; however, transfer to fresh buffer initiated a resumption of autolytic activity, indicating that an inhibitor is released during the course of pectin hydrolysis.


Sign in / Sign up

Export Citation Format

Share Document