A SEROLOGICAL STUDY OF CELL WALLS OF CERTAIN LACTIC ACID BACTERIA

1962 ◽  
Vol 8 (5) ◽  
pp. 629-637
Author(s):  
K. L. Chung ◽  
Roma Z. Hawirko

From three species of Lactobacillus and three species of Streptococcus, cultured in a synthetic medium, cell walls were isolated following sonic disintegration and purified by washing. Sera against each species were prepared by injecting three rabbits with cell walls, and three with intact cells. Reciprocal agglutination tests were carried out with unabsorbed and absorbed antisera. More kinds of antibodies were detected with cell-wall antisera than with intact-cell antisera. Many species in the two genera shared common antigens. S. faecalis was the exception. Certain antigens believed to be complex haptens in nature reacted with heterologous antisera. Haemagglutination of tanned erythrocytes sensitized with a particulate cell-wall suspension showed fewer cross reactions than agglutination of intact-cell suspensions.The evidence presented shows the possibility of using antisera against species-specific cell-wall antigens for the identification of these species. The relationship of these species is discussed.

IAWA Journal ◽  
2019 ◽  
Vol 40 (4) ◽  
pp. 845-870 ◽  
Author(s):  
Adya P. Singh ◽  
Yoon Soo Kim ◽  
Ramesh R. Chavan

ABSTRACT This review presents information on the relationship of ultrastructure and composition of wood cell walls, in order to understand how wood degrading bacteria utilise cell wall components for their nutrition. A brief outline of the structure and composition of plant cell walls and the degradation patterns associated with bacterial degradation of wood cell walls precedes the description of the relationship of cell wall micro- and ultrastructure to bacterial degradation of the cell wall. The main topics covered are cell wall structure and composition, patterns of cell wall degradation by erosion and tunnelling bacteria, and the relationship of cell wall ultrastructure and composition to wood degradation by erosion and tunnelling bacteria. Finally, pertinent information from select recent studies employing molecular approaches to identify bacteria which can degrade lignin and other wood cell wall components is presented, and prospects for future investigations on wood degrading bacteria are explored.


2009 ◽  
Vol 75 (12) ◽  
pp. 3891-3895 ◽  
Author(s):  
Jia Li ◽  
Xiaomin Hu ◽  
Jianpin Yan ◽  
Zhiming Yuan

ABSTRACT The binding affinities and specificities of six truncated S-layer homology domain (SLH) polypeptides of mosquitocidal Bacillus sphaericus strain C3-41 with the purified cell wall sacculi have been assayed. The results indicated that the SLH polypeptide comprised of amino acids 31 to 210 was responsible for anchoring the S-layer subunits to the rigid cell wall layer via a distinct type of secondary cell wall polymer and that a motif of the recombinant SLH polypeptide comprising amino acids 152 to 210 (rSLH152-210) was essential for the stable binding of the S-layer with the bacterial cell walls. The quantitative assays revealed that the KD (equilibrium dissociation constant) values of rSLH152-210 and rSLH31-210 with purified cell wall sacculi were 1.11 × 10−6 M and 1.40 × 10−6 M, respectively. The qualitative assays demonstrated that the SLH domain of strain C3-41 could bind only to the cell walls or the cells treated with 5 M guanidinium hydrochloride of both toxic and nontoxic B. sphaericus strains but not to those from other bacteria, indicating the species-specific binding of the SLH polypeptide of B. sphaericus with bacterial cell walls.


Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1113 ◽  
Author(s):  
Liuyang Han ◽  
Xingling Tian ◽  
Tobias Keplinger ◽  
Haibin Zhou ◽  
Ren Li ◽  
...  

Structural and chemical deterioration and its impact on cell wall mechanics were investigated for visually intact cell walls (VICWs) in waterlogged archaeological wood (WAW). Cell wall mechanical properties were examined by nanoindentation without prior embedding. WAW showed more than 25% decrease of both hardness and elastic modulus. Changes of cell wall composition, cellulose crystallite structure and porosity were investigated by ATR-FTIR imaging, Raman imaging, wet chemistry, 13C-solid state NMR, pyrolysis-GC/MS, wide angle X-ray scattering, and N2 nitrogen adsorption. VICWs in WAW possessed a cleavage of carboxyl in side chains of xylan, a serious loss of polysaccharides, and a partial breakage of β-O-4 interlinks in lignin. This was accompanied by a higher amount of mesopores in cell walls. Even VICWs in WAW were severely deteriorated at the nanoscale with impact on mechanics, which has strong implications for the conservation of archaeological shipwrecks.


1959 ◽  
Vol 12 (4) ◽  
pp. 395 ◽  
Author(s):  
J Dainty ◽  
AB Hope

Measurements of ion exchange were made between isolated cell walls of Ohara australis and an external solution. Comparison between intact cells and cell walls showed that nearly all the easily exchangeable cations are located in the cell wall. The wall is hown to consist of "water free space" (W.F.S.) and "Donnan free space" (D.F.S.); the concentration of in diffusible anions in the D.F.S. is about O� 6 equivjl. This finding is contrary to past suggestions that the D.F.S. is in the cytoplasm of plant cells.


1960 ◽  
Vol 6 (3) ◽  
pp. 251-256 ◽  
Author(s):  
I. J. McDonald

Nutritional requirements of a Micrococcus species (M. freudenreichii, A.T.C.C. No. 407) were studied. The organism required glutamic acid, thiamine, biotin, magnesium, iron, and potassium for growth. Cells from such a synthetic medium were shown to contain methionine indicating that inorganic sulphur was used. Glutamic acid could not be replaced with glutamine (unheated), aspartic acid, asparagine, nor ammonium salts. The relationship of nutritional requirements of micrococci and staphylococci to classification is discussed.


Holzforschung ◽  
2005 ◽  
Vol 59 (1) ◽  
pp. 82-89 ◽  
Author(s):  
Jinzhen Cao ◽  
D. Pascal Kamdem

Abstract The relationship between copper absorption and density distribution in wood cell walls was investigated in this study. The density distribution on layer level was obtained from two approaches: (1) calculation by using data obtained from literature; (2) microdistribution of carbon and oxygen atoms in the wood cell. The microdistribution of carbon and oxygen in untreated southern yellow pine (Pinus spp.) sapwood, as well as copper in cell walls of copper-ethanolamine (Cu-EA) treated wood was determined by scanning electron microscopy coupled with energy dispersive X-ray analysis (SEM-EDXA). Both approaches for density distribution led to the same result: the density was higher in the compound middle lamella and cell corners than in the secondary wall. The concentration/intensity of Cu, C and O in the cell wall follow the same trend as the density distribution; suggesting that density may play a major role in SEM-EDXA study of the distribution of metal-containing wood preservatives within the wood cell wall.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Mariusz K. Jaglarz ◽  
Franck Bazile ◽  
Katarzyna Laskowska ◽  
Zbigniew Polanski ◽  
Franck Chesnel ◽  
...  

Translationally Controlled Tumour Protein (TCTP) associates with microtubules (MT), however, the details of this association are unknown. Here we analyze the relationship of TCTP with MTs and centrosomes inXenopus laevisand mammalian cells using immunofluorescence, tagged TCTP expression and immunoelectron microscopy. We show that TCTP associates both with MTs and centrosomes at spindle poles when detected by species-specific antibodies and by Myc-XlTCTP expression inXenopusand mammalian cells. However, when the antibodies against XlTCTP were used in mammalian cells, TCTP was detected exclusively in the centrosomes. These results suggest that a distinct pool of TCTP may be specific for, and associate with, the centrosomes. Double labelling for TCTP and γ-tubulin with immuno-gold electron microscopy inXenopus laevisoogonia shows localization of TCTP at the periphery of the γ-tubulin-containing pericentriolar material (PCM) enveloping the centriole. TCTP localizes in the close vicinity of, but not directly on the MTs inXenopusovary suggesting that this association requires unidentified linker proteins. Thus, we show for the first time: (1) the association of TCTP with centrosomes, (2) peripheral localization of TCTP in relation to the centriole and the γ-tubulin-containing PCM within the centrosome, and (3) the indirect association of TCTP with MTs.


1977 ◽  
Vol 89 (2) ◽  
pp. 327-340 ◽  
Author(s):  
E. Jane Morris ◽  
J. S. D. Bacon

SummaryThe digestibilities of grass cell wall constituents determined in a digestion trial were compared with those obtained by suspending various isolated cell wall preparations in nylon bags in the rumen of a sheep. Particular attention was paid to acetyl groups and to individual sugars, which were determined in both cases by gas liquid chromatography.For dried grass and hay in the digestion trial the cell wall constituents showed digestibilities decreasing in the following order: arabinose, galactose, glucose, xylose, acetyl, lignin.For a leaf cell wall preparation derived from all cell types except mesophyll, the nylon bag technique allowed the same order of digestibilities; rhamnose and uronic acids were also measured and found to be rapidly digested. Mesophyll cell walls placed in nylon bags were more readily digested than non-mesophyll. All the sugars, and also acetyl groups, were digested to the same extent.In a grass cell wall preparation isolated from sheep faeces, tested similarly, xylose and glucose were digested to the same extent, but acetyl groups were less digested.Removal of acetyl groups, using sodium ethoxide, which left the sugar composition and lignin content unchanged, increased the digestibility particularly of the cell walls from faeces.The results are discussed with reference to the relationship between cell wall composition and digestibility.


1961 ◽  
Vol 200 (2) ◽  
pp. 297-300 ◽  
Author(s):  
S. J. Riggi ◽  
N. R. Di Luzio

The functional activity of the reticuloendothelial system (RES), as determined by the intravascular clearance of colloidal carbon, and the degree of induced RE hyperplasia were studied following the intravenous injection of various constituents of zymosan. The readily extractable lipid component from the yeast cell wall was inactive, as was the polysaccharide, mannan. Stimulatory activity was still present in the zymosan residue after removal of free and bound lipids. The administration of glucan derived either from yeast, or its cell wall, resulted in marked RE activation and induced hyperplasia, demonstrating it to be the active RE stimulating agent. The relationship of glucan's chemical structure to its ability to induce RE hyperfunction and hyperplasia is discussed.


2020 ◽  
Author(s):  
Adrian Brückner

AbstractA vast diversity of parasites associate with ants. Living in and around ant nests these organisms must overcome ant colony defenses. As ant defensive behavior is mainly mediated by species-specific cuticular hydrocarbons (CHCs) or alarm pheromones, ant-associated parasites can either crack their hosts chemical communication code by modifying their own CHC-profiles or use pro-active strategies like chemical weaponry for distraction and repellency. While the chemical nature of ant-parasite interactions has been intensively studied for highly host specific parasites, the chemical-deceptive strategies of the rather rare ant-resembling Heteropterans are unknown. To gain insight into this system, I studied the bug Scolopostethus pacificus (Barber 1918) which can be found near the nests of the ecologically dominant and aggressive velvety tree ant (Liometopum occidentale, Emery 1895). Using behavioral, chemical and molecular approaches I disentangled the relationship of S. pasificus and its host ant. Chemical profiling of the bug and the ant revealed that the bug does not make use of CHC insignificance or mimicry, but instead uses a cocktail of volatile compounds released from its metathoracic glands that likely moderates encounters with its aggressive host. Feeding trials with armed and artificially disarmed bugs revealed a defensive function of the gland exudates. Targeted molecular gut barcoding showed that S. pasificus does not feed on L. occidentale. These results suggest that chemical weaponry, rather than a chemical code-cracking CHC matching or chemical insignificance, enables S. pasificus to get along with and live in close proximity to its host ant.


Sign in / Sign up

Export Citation Format

Share Document