scholarly journals Helping in humans and other animals: a fruitful interdisciplinary dialogue

2017 ◽  
Vol 284 (1863) ◽  
pp. 20170929 ◽  
Author(s):  
Redouan Bshary ◽  
Nichola J. Raihani

Humans are arguably unique in the extent and scale of cooperation with unrelated individuals. While pairwise interactions among non-relatives occur in some non-human species, there is scant evidence of the large-scale, often unconditional prosociality that characterizes human social behaviour. Consequently, one may ask whether research on cooperation in humans can offer general insights to researchers working on similar questions in non-human species, and whether research on humans should be published in biology journals. We contend that the answer to both of these questions is yes. Most importantly, social behaviour in humans and other species operates under the same evolutionary framework. Moreover, we highlight how an open dialogue between different fields can inspire studies on humans and non-human species, leading to novel approaches and insights. Biology journals should encourage these discussions rather than drawing artificial boundaries between disciplines. Shared current and future challenges are to study helping in ecologically relevant contexts in order to correctly interpret how payoff matrices translate into inclusive fitness, and to integrate mechanisms into the hitherto largely functional theory. We can and should study human cooperation within a comparative framework in order to gain a full understanding of the evolution of helping.

2019 ◽  
Author(s):  
Kamal Batra ◽  
Stefan Zahn ◽  
Thomas Heine

<p>We thoroughly benchmark time-dependent density- functional theory for the predictive calculation of UV/Vis spectra of porphyrin derivatives. With the aim to provide an approach that is computationally feasible for large-scale applications such as biological systems or molecular framework materials, albeit performing with high accuracy for the Q-bands, we compare the results given by various computational protocols, including basis sets, density-functionals (including gradient corrected local functionals, hybrids, double hybrids and range-separated functionals), and various variants of time-dependent density-functional theory, including the simplified Tamm-Dancoff approximation. An excellent choice for these calculations is the range-separated functional CAM-B3LYP in combination with the simplified Tamm-Dancoff approximation and a basis set of double-ζ quality def2-SVP (mean absolute error [MAE] of ~0.05 eV). This is not surpassed by more expensive approaches, not even by double hybrid functionals, and solely systematic excitation energy scaling slightly improves the results (MAE ~0.04 eV). </p>


Author(s):  
Samir Okasha

Inclusive fitness theory, originally due to W. D. Hamilton, is a popular approach to the study of social evolution, but shrouded in controversy. The theory contains two distinct aspects: Hamilton’s rule (rB > C); and the idea that individuals will behave as if trying to maximize their inclusive fitness in social encounters. These two aspects of the theory are logically separable but often run together. A generalized version of Hamilton’s rule can be formulated that is always true, though whether it is causally meaningful is debatable. However, the individual maximization claim only holds true if the payoffs from the social encounter are additive. The notion that inclusive fitness is the ‘goal’ of individuals’ social behaviour is less robust than some of its advocates acknowledge.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Chih-Chuen Lin ◽  
Phani Motamarri ◽  
Vikram Gavini

AbstractWe present a tensor-structured algorithm for efficient large-scale density functional theory (DFT) calculations by constructing a Tucker tensor basis that is adapted to the Kohn–Sham Hamiltonian and localized in real-space. The proposed approach uses an additive separable approximation to the Kohn–Sham Hamiltonian and an L1 localization technique to generate the 1-D localized functions that constitute the Tucker tensor basis. Numerical results show that the resulting Tucker tensor basis exhibits exponential convergence in the ground-state energy with increasing Tucker rank. Further, the proposed tensor-structured algorithm demonstrated sub-quadratic scaling with system-size for both systems with and without a gap, and involving many thousands of atoms. This reduced-order scaling has also resulted in the proposed approach outperforming plane-wave DFT implementation for systems beyond 2000 electrons.


Genetics ◽  
1989 ◽  
Vol 121 (4) ◽  
pp. 877-889
Author(s):  
A B Harper

Abstract The theory of evolutionarily stable strategies (ESS) predicts the long-term evolutionary outcome of frequency-dependent selection by making a number of simplifying assumptions about the genetic basis of inheritance. I use a symmetrized multilocus model of quantitative inheritance without mutation to analyze the results of interactions between pairs of related individuals and compare the equilibria to those found by ESS analysis. It is assumed that the fitness changes due to interactions can be approximated by the exponential of a quadratic surface. The major results are the following. (1) The evolutionarily stable phenotypes found by ESS analysis are always equilibria of the model studied here. (2) When relatives interact, one of the two conditions for stability of equilibria differs between the two models; this can be accounted for by positing that the inclusive fitness function for quantitative characters is slightly different from the inclusive fitness function for characters determined by a single locus. (3) The inclusion of environmental variance will in general change the equilibrium phenotype, but the equilibria of ESS analysis are changed to the same extent by environmental variance. (4) A class of genetically polymorphic equilibria occur, which in the present model are always unstable. These results expand the range of conditions under which one can validly predict the evolution of pairwise interactions using ESS analysis.


2021 ◽  
Vol 22 (3) ◽  
pp. 313-320
Author(s):  
Dana Petcu

This position paper aims to identify the current and future challenges in application, workload or service deployment mechanisms in Cloud-to-Edge environments. We argue that the adoption of the microservices and unikernels on large scale is adding new entries on the list of requirements of a deployment mechanism, but offers an opportunity to decentralize the associated processes and improve the scalability of the applications. Moreover, the deployment in Cloud-to-Edge environment needs the support of federated machine learning.


1994 ◽  
Vol 31 (4) ◽  
pp. 339-367 ◽  
Author(s):  
Joel Paris

Evolutionary principles can explain many aspects of human social behaviour. Despite important contro versies concerning the theory of sociobiology, evol utionary models offer cogent explanations for social phenomena such as altruism and parental investment. Evolutionary social science also has an important relevance for transcultural psychiatry, in that it is consistent with a biopsychosocial model for the etiology of psychiatric disorders, and points to the universals which underlie cultural variations in psychopathology.


Animals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 140 ◽  
Author(s):  
Melanie Connor ◽  
Alistair Lawrence ◽  
Sarah Brown

Oxytocin has been well researched in association with psychological variables and is widely accepted as a key modulator of human social behaviour. Previous work indicates involvement of oxytocin receptor gene (OXTR) single nucleotide polymorphisms (SNPs) in human-human empathy, however little is known about associations of OXTR SNPs with empathy and affective reactions of humans towards animals. Five OXTR SNPs previously found to associate with human social behaviour were genotyped in 161 students. Empathy towards animals and implicit associations were evaluated. A General Linear Model was used to investigate the OXTR alleles and allelic combinations along with socio-demographic variables and their influence on empathy towards animals. Empathy towards animals showed a significant association with OXTR SNP rs2254298; homozygous G individuals reported higher levels of empathy towards animals than heterozygous (GA). Our preliminary findings show, for the first time, that between allelic variation in OXTR and animal directed empathy in humans maybe associated, suggesting that OXTRs social behaviour role crosses species boundaries, warranting independent replication.


Sign in / Sign up

Export Citation Format

Share Document