scholarly journals Latitudinal pattern of flowering synchrony in an invasive wind-pollinated plant

2018 ◽  
Vol 285 (1884) ◽  
pp. 20181072 ◽  
Author(s):  
Shiyun Qiu ◽  
Xiao Xu ◽  
Shuangshuang Liu ◽  
Wenwen Liu ◽  
Jing Liu ◽  
...  

Flowering synchrony can play an important role in plants' reproductive success, which is essential for the successful establishment and spread of invasive plants. Although flowering synchrony has been found to be closely related to climatic factors, the effects of variation in such factors along latitudinal gradient on flowering synchrony and the role of flowering synchrony in the reproductive success of invading populations remain largely unexplored. In a 2-year field study, we examined the latitudinal variation of flowering phenology, especially flowering synchrony, in an invasive plant, Spartina alterniflora , along coastal China, and its relationship with population seed set across three climatic zones. We found that first flowering date was delayed, and flowering synchrony increased with increasing latitude. Flowering synchrony was negatively related to temperature during flowering season but not to soil properties or precipitation, suggesting that climate has shaped the latitudinal pattern of flowering synchrony. Moreover, a positive correlation between flowering synchrony and seed set across latitudes indicates the possible role of flowering synchrony in the latitudinal pattern of sexual reproduction in S. alterniflora . These results suggest that, in addition to the effects of climate on the growth of invasive species, climatic factors can play an important role in the invasion success of alien plants by regulating the flowering synchrony and thus the reproductive success of invasive plants.

Diversity ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 40 ◽  
Author(s):  
Nathan E. Harms

The ability to invade communities in a variety of habitats (e.g., along a depth gradient) may facilitate establishment and spread of invasive plants, but how multiple lineages of a species perform under varying conditions is understudied. A series of greenhouse common garden experiments were conducted in which six diploid and four triploid populations of the aquatic invasive plant Butomus umbellatus L. (Butomaceae) were grown in submersed or emergent conditions, in monoculture or in a multispecies community, to compare establishment and productivity of cytotypes under competition. Diploid biomass overall was 12 times higher than triploids in the submersed experiment and three times higher in the emergent experiment. Diploid shoot:root ratio was double that of triploid plants in submersed conditions overall, and double in emergent conditions in monoculture. Relative interaction intensities (RII) indicated that triploid plants were sixteen times more negatively impacted by competition under submersed conditions but diploid plants were twice as impacted under emergent conditions. Recipient communities were similarly negatively impacted by B. umbellatus cytotypes. This study supports the idea that diploid and triploid B. umbellatus plants are equally capable of invading emergent communities, but that diploid plants may be better adapted for invading in submersed habitats. However, consistently lower shoot:root ratios in both monoculture and in communities suggests that triploid plants may be better-adapted competitors in the long term due to increased resource allocation to roots. This represents the first examination into the role of cytotype and habitat on competitive interactions of B. umbellatus.


2016 ◽  
Vol 94 (4) ◽  
pp. 736
Author(s):  
Jeanett Escobedo-Sarti ◽  
Demetria Mondragón

<p><strong>Background:</strong> Knowledge of the flowering phenology of species with an epiphytic habit and a dioecious sexual system is scarce.</p><p><strong>Questions:</strong> We studied the flowering phenology of a population of the dioecious epiphytic bromeliad, <em>Catopsis</em> <em>compacta</em>, in an oak forest in Oaxaca, Mexico, to answer the following questions: 1) what type of flowering period is exhibited by this population of <em>C. compacta</em>? 2) what is the degree of synchrony between the male and female flowering periods? and 3) what is the flowering synchrony index of the population?</p><p><strong>Methods:</strong> In February 2006, in a 20 m × 20 m plot, we marked and measured 151 individuals of <em>C. compacta</em> ≥ 10 cm in height (minimum reproductive size). We recorded the number of flowers and fruits present in each individual every month for one year.</p><p><strong>Results:</strong> Our results showed that the flowering period in both sexes lasted for three months (May–July). Only 23 marked individuals flowered (15.23 %): of these 12 (52.17 %) were female and 11 (47.83 %) were male. The index of synchrony between females and males was 0.958 ± 0.013 and the flowering synchrony index of the population was 0.833 ± 0.189.</p><p><strong>Conclusions:</strong> The high flowering synchrony between the sexes, together with a flowering season that coincided with the period of highest rainfall when the number of arthropods (potential pollinators) is the highest, could favor breeding and, therefore, reproductive success.</p>


2021 ◽  
Vol 8 ◽  
Author(s):  
Fang-Lei Gao ◽  
Qiao-Sheng He ◽  
Yi-Dan Zhang ◽  
Jia-Hui Hou ◽  
Fei-Hai Yu

Spatial heterogeneity in soil nutrient availability can influence performance of invasive plant species under competition-free environments. However, little was known about whether invasive plants perform better under heterogeneous than under homogeneous soil nutrient conditions in competition with native plant communities. We conducted a multi-species greenhouse experiment to test the effect of soil nutrient heterogeneity on the growth and invasion success of alien plants in a native plant community. We grew ten alien invasive plant species that are common in China under a homogeneous or heterogeneous environment alone or together with a community consisting of six native plant species from China. Compared with the homogeneous soil condition, the heterogeneous soil condition significantly increased aboveground biomass of the invasive plants. However, soil nutrient heterogeneity did not affect the relative abundance of the invasive species, as measured by the ratio of aboveground biomass of the invasive species to total aboveground biomass of the whole community. There were no significant interactive effects of soil nutrient heterogeneity and competition from the native community on aboveground biomass of the invasive plants and also no significant effects of soil nutrient heterogeneity on its relative abundance. Our results indicate that soil nutrient heterogeneity has a positive effect on the growth of invasive plants in general, but do not support the idea that soil nutrient heterogeneity favors the invasion success of exotic plant species in native plant communities.


2020 ◽  
Author(s):  
Natalia Costa Soares ◽  
Pietro Kiyoshi Maruyama ◽  
Vanessa Graziele Staggemeier ◽  
Leonor Patrícia Cerdeira Morellato ◽  
Márcio Silva Araújo

Abstract Background and Aims Plant individuals within a population differ in their phenology and interactions with pollinators. However, it is still unknown how individual differences affect the reproductive success of plants that have functionally specialized pollination systems. Here, we evaluated whether plant individual specialization in phenology (temporal specialization) and in pollination (pollinator specialization) affect the reproductive success of the crepuscular-bee-pollinated plant Trembleya laniflora (Melastomataceae). Methods We quantified flowering activity (amplitude, duration and overlap), plant–pollinator interactions (number of flowers visited by pollinators) and reproductive success (fruit set) of T. laniflora individuals from three distinct locations in rupestrian grasslands of southeastern Brazil. We estimated the degree of individual temporal specialization in flowering phenology and of individual specialization in plant–pollinator interactions, and tested their relationship with plant reproductive success. Key Results Trembleya laniflora presented overlapping flowering, a temporal generalization and specialized pollinator interactions. Flowering overlap among individuals and populations was higher than expected by chance but did not affect the individual interactions with pollinators and nor their reproductive success. In contrast, higher individual generalization in the interactions with pollinators was related to higher individual reproductive success. Conclusions Our findings suggest that individual generalization in plant–pollinator interaction reduces the potential costs of specialization at the species level, ensuring reproductive success. Altogether, our results highlight the complexity of specialization/generalization of plant–pollinator interactions at distinct levels of organization, from individuals to populations, to species.


2021 ◽  
Author(s):  
Yongge Yuan ◽  
Huifei Jin ◽  
Junmin Li

Abstract Aims There is an increasing likelihood that invasive plants are again exposed to their co-evolved specialist herbivores in the non-native range. However, whether there is a latitudinal pattern associated with the resistance of an invasive plant to its co-evolved herbivores and how soil microbes affect resistance has been little explored. We hypothesized that the resistance of invasive Solidago canadensis to its co-evolved insect herbivore Corythucha marmorata could increase with latitude, and that local rhizosphere microbes could facilitate invasive plants to become resistant to their co-evolved herbivores. Methods We conducted a field survey and a greenhouse experiment to examine whether there was a latitudinal pattern in the abundance of C. marmorata and in the damage it caused to S. canadensis in China. We tested whether local rhizosphere microbes of invasive plants can promote the resistance of S. canadensis to C. marmorata herbivory. Important findings In the field survey, both density of C. marmorata and damage level of S. canadensis were positively correlated with latitude, and with S. canadensis plant growth, indicating a latitudinal pattern in the resistance of S. canadensis to C. marmorata. However, in the greenhouse experiment, S. canadensis from different latitudes did not suffer significantly from different levels of damage from C. marmorata. Additionally, the damage level of S. canadensis was lower when rhizosphere soil and rhizomes originated from field S. canadensis with same damage level than with different damage levels. This result indicates that local rhizosphere soil microbes promote the adaptation of S. canadensis to resistance of C. marmorata.


Genome ◽  
2019 ◽  
Vol 62 (3) ◽  
pp. 217-228
Author(s):  
Kowiyou Yessoufou ◽  
Bezeng S. Bezeng ◽  
Orou G. Gaoue ◽  
Thato Bengu ◽  
Michelle van der Bank

Alien invasive species are problematic both economically and ecologically, particularly on islands. As such, understanding how they interact with their environment is necessary to inform invasive species management. Here, we ask the following questions: What are the main functional traits that correlate with invasion success of alien plants on Robben Island? How does phylogenetic structure shape biotic interactions on the island? Using multiple approaches to explore these questions, we found that alien invasive species flower later during the year and for longer period, although flowering phenology was sensitive to alternative starting date. Additionally, we observed that alien invasive species are mostly abiotically pollinated and are generally hermaphroditic whilst their native counterparts rely on biotic pollinators, flower earlier, and are generally dioecious, suggesting that alien invasive and native species use different ecological niches. Furthermore, we found a facilitative interaction between an alien invasive legume and other invasive plants as predicted by the invasional meltdown hypothesis, but this does not influence the phylogenetic structure of plant communities. Finally, phylogenetically diverse set of native species are less receptive to alien invasive species. Collectively, our findings reveal how biotic interactions and phylogenetic relatedness structure alien invasive – native co-existence.


2021 ◽  
Author(s):  
Johanna Yletyinen ◽  
George L. W. Perry ◽  
Olivia R. Burge ◽  
Norman W. H. Mason ◽  
Philip Stahlmann‐Brown

2021 ◽  
pp. 1-52
Author(s):  
Michel Beine ◽  
Lionel Jeusette

Abstract Recent surveys of the literature on climate change and migration emphasize the important diversity of outcomes and approaches of the empirical studies. In this paper, we conduct a meta-analysis in order to investigate the role of the methodological choices of these empirical studies in finding some particular results concerning the role of climatic factors as drivers of human mobility. We code 51 papers representative of the literature in terms of methodological approaches. This results in the coding of more than 85 variables capturing the methodology of the main dimensions of the analysis at the regression level. These dimensions include authors' reputation, type of mobility, measures of mobility, type of data, context of the study, econometric methods, and last but not least measures of the climatic factors. We look at the influence of these characteristics on the probability of finding any effect of climate change, a displacement effect, an increase in immobility, and evidence in favor of a direct vs. an indirect effect. Our results highlight the role of some important methodological choices, such as the frequency of the data on mobility, the level of development, the measures of human mobility and of the climatic factors as well as the econometric methodology.


Behaviour ◽  
2011 ◽  
Vol 148 (11-13) ◽  
pp. 1372-1392 ◽  
Author(s):  
Alice U. Edler ◽  
Thomas W.P. Friedl

AbstractThe role of bright plumage colouration for female choice has been the focus of research in sexual selection for many years, with several studies showing that females prefer the most elaborately ornamented males, which are often also the highest quality individuals. Here, we analysed the associations between reproductive performance and plumage, body condition and blood parasite load in the red bishop (Euplectes orix), a sexually dimorphic and polygynous weaverbird species, where males in a carotenoid-based orange-to-red breeding plumage defend territories and build many nests to which they try to attract females. Male reproductive success in terms of number of nests accepted was mainly determined by the number of nests built, but was also positively related to blood parasite load, while we found no influence of plumage characteristics. Together with previously obtained data, our results indicate that plumage characteristics in the red bishop do not affect male reproductive success and are generally not suitable to reliably indicate male quality. We suggest that the primary function of the brilliant orange-scarlet breeding plumage might be presence signalling in terms of increasing conspicuousness of breeding males to females searching for mates.


Sign in / Sign up

Export Citation Format

Share Document