scholarly journals An experimental test of the mutation-selection balance model for the maintenance of genetic variance in fitness components

2018 ◽  
Vol 285 (1890) ◽  
pp. 20181864 ◽  
Author(s):  
Nathaniel P. Sharp ◽  
Aneil F. Agrawal

Despite decades of research, the factors that maintain genetic variation for fitness are poorly understood. It is unclear what fraction of the variance in a typical fitness component can be explained by mutation-selection balance (MSB) and whether fitness components differ in this respect. In theory, the level of standing variance in fitness due to MSB can be predicted using the rate of fitness decline under mutation accumulation, and this prediction can be directly compared to the standing variance observed. This approach allows for controlled statistical tests of the sufficiency of the MSB model, and could be used to identify traits or populations where genetic variance is maintained by other factors. For example, some traits may be influenced by sexually antagonistic balancing selection, resulting in an excess of standing variance beyond that generated by deleterious mutations. We describe the underlying theory and use it to test the MSB model for three traits in Drosophila melanogaster . We find evidence for differences among traits, with MSB being sufficient to explain genetic variance in larval viability but not male mating success or female fecundity. Our results are consistent with balancing selection on sexual fitness components, and demonstrate the feasibility of rigorous statistical tests of the MSB model.

2017 ◽  
Author(s):  
Nathaniel P. Sharp ◽  
Aneil F. Agrawal

ABSTRACTDespite decades of research, the factors that maintain genetic variation for fitness are poorly understood. Mutation selection balance will always contribute to standing variance, but it is unclear what fraction of the variance in a typical fitness component can be explained by mutation-selection balance and whether fitness components differ in this respect. In theory, the level of standing variance in fitness due to mutation-selection balance can be predicted using the rate of fitness decline under mutation accumulation, and this prediction can be directly compared to the actual standing variance observed. This approach allows for controlled statistical tests of the sufficiency of the mutation-selection balance model, and could be used to identify traits or populations where genetic variance is maintained by factors beyond mutation-selection balance. For example, some traits may be influenced by sexually antagonistic balancing selection, resulting in an excess of standing variance beyond that generated by deleterious mutations. To encourage the application of this approach, we describe the underlying theory and use it to test the mutation selection balance model for three traits in Drosophila melanogaster. We find some evidence for non-mutational variance in male mating success and female fecundity relative to larval viability, which is consistent with balancing selection on sexual fitness components. Finally, we discuss the theoretical and practical limitations to this approach, and discuss how to apply it successfully.


2015 ◽  
Vol 112 (6) ◽  
pp. 1662-1669 ◽  
Author(s):  
Brian Charlesworth

DNA sequencing has revealed high levels of variability within most species. Statistical methods based on population genetics theory have been applied to the resulting data and suggest that most mutations affecting functionally important sequences are deleterious but subject to very weak selection. Quantitative genetic studies have provided information on the extent of genetic variation within populations in traits related to fitness and the rate at which variability in these traits arises by mutation. This paper attempts to combine the available information from applications of the two approaches to populations of the fruitfly Drosophila in order to estimate some important parameters of genetic variation, using a simple population genetics model of mutational effects on fitness components. Analyses based on this model suggest the existence of a class of mutations with much larger fitness effects than those inferred from sequence variability and that contribute most of the standing variation in fitness within a population caused by the input of mildly deleterious mutations. However, deleterious mutations explain only part of this standing variation, and other processes such as balancing selection appear to make a large contribution to genetic variation in fitness components in Drosophila.


1974 ◽  
Vol 24 (2) ◽  
pp. 137-149 ◽  
Author(s):  
Dragoslav Marinković ◽  
Francisco J. Ayala

SUMMARYWe have studied the effects on fitness of allelic variation at three gene loci (Est-5, Odh, and Mdh-2)coding for enzymes in Drosophila pseudoobscura. Genotype has a significant effect on fitness for all six parameters measured (female fecundity, male mating capacity, egg-to-adult survival under near-optimal and under competitive conditions, and rate of development under near-optimal and under competitive conditions). No single genotype is best for all six fitness parameters; rather, genotypes with superior performance during a certain stage of the life-cycle may have low fitness at some other stage, or in different environmental conditions. Heterozygotes are sometimes best when all fitness parameters are considered. There are significant interactions between loci. The various forms of balancing selection uncovered in our experiments may account for the polymorphisms occurring in natural populations of D. pseudoobscura at the three loci studied.


2021 ◽  
Vol 288 (1952) ◽  
pp. 20210235
Author(s):  
Xin Tong ◽  
Peng-Yang Wang ◽  
Mei-Zhuo Jia ◽  
Randy Thornhill ◽  
Bao-Zhen Hua

Traumatic mating is the male wounding his mate during mating using specialized anatomy. However, why males have evolved to injure their mates during mating remains poorly understood. We studied traumatic mating in Dicerapanorpa magna to determine its effects on male and female fitness. The sharp teeth on male gonostyli penetrate the female genitalia and cause copulatory wounds, and the number of scars on the female genitals is positively related to the number of times females mated. When the injurious teeth were encased with low-temperature wax, preventing their penetration of the female's genitalia during mating, male mating success and copulation duration were reduced significantly, indicating the importance of the teeth in allowing the male to secure copulation, remain in copula and effectively inseminate his mate. The remating experiments showed that traumatic mating had little effect on the female mating refractory period, but significantly reduced female remating duration with subsequent males, probably benefiting the first-mating male with longer copulation duration and transferring more sperm into the female's spermatheca. The copulatory wounds reduced female fecundity, but did not accelerate the timing of egg deposition. This is probably the first report that traumatic mating reduces female remating duration through successive remating experiments in animals. Overall, our results provide evidence that traumatic mating in the scorpionfly helps increase the male's anchoring control during mating and provides him advantage in sperm competition, but at the expense of lowering female fecundity.


1985 ◽  
Vol 46 (3) ◽  
pp. 279-285 ◽  
Author(s):  
Linda Partridge ◽  
Trudy F. C. Mackay ◽  
Susan Aitken

SUMMARYThe male mating ability and male fertility of 40 third chromosome homozygote lines has been measured. There was significant between-line differentiation for both characters, and comparison with a heterozygous stock indicated inbreeding depression and hence dominance variation for them. The characters showed significant positive correlation both with each other and with other fitness components and total fitness, as measured by Mackay (1985). This pattern of large positive correlations between fitness components is not expected to occur in outbred populations.


1999 ◽  
Vol 74 (3) ◽  
pp. 329-340 ◽  
Author(s):  
BRIAN CHARLESWORTH ◽  
DEBORAH CHARLESWORTH

Data on the effects of inbreeding on fitness components are reviewed in the light of population genetic models of the possible genetic causes of inbreeding depression. Deleterious mutations probably play a major role in causing inbreeding depression. Putting together the different kinds of quantitative genetic data, it is difficult to account for the very large effects of inbreeding on fitness in Drosophila and outcrossing plants without a significant contribution from variability maintained by selection. Overdominant effects of alleles on fitness components seem not to be important in most cases. Recessive or partially recessive deleterious effects of alleles, some maintained by mutation pressure and some by balancing selection, thus seem to be the most important source of inbreeding depression. Possible experimental approaches to resolving outstanding questions are discussed.


Genetics ◽  
1974 ◽  
Vol 77 (3) ◽  
pp. 559-564
Author(s):  
Wyatt W Anderson ◽  
Takao K Watanabe

ABSTRACT Fertility, the component of selection due to female fecundity and male mating success, differed significantly among the ST/ST, ST/AR, and AR/AR karyotypes in experimental populations and varied with karyotypic frequency. In relation to ST/AR, ST/ST females and males had higher fertilities at low frequency; AR/AR males and females were at a significant fertility disadvantage at intermediate frequency, while at low and at high frequencies their fertilities matched or exceeded that of the heterokaryotype. These fertility differences were comparable in size to viability differences previously reported for D. pseudoobscura karyotypes. Differential fertility seems likely to be an important element, perhaps just as important as differential viability, in the balancing selection that maintains the chromosomal polymorphism in this species.


Sign in / Sign up

Export Citation Format

Share Document