scholarly journals Genes, geology and germs: gut microbiota across a primate hybrid zone are explained by site soil properties, not host species

2019 ◽  
Vol 286 (1901) ◽  
pp. 20190431 ◽  
Author(s):  
Laura E. Grieneisen ◽  
Marie J. E. Charpentier ◽  
Susan C. Alberts ◽  
Ran Blekhman ◽  
Gideon Bradburd ◽  
...  

Gut microbiota in geographically isolated host populations are often distinct. These differences have been attributed to between-population differences in host behaviours, environments, genetics and geographical distance. However, which factors are most important remains unknown. Here, we fill this gap for baboons by leveraging information on 13 environmental variables from 14 baboon populations spanning a natural hybrid zone. Sampling across a hybrid zone allowed us to additionally test whether phylosymbiosis (codiversification between hosts and their microbiota) is detectable in admixed, closely related primates. We found little evidence of genetic effects: none of host genetic ancestry, host genetic relatedness nor genetic distance between host populations were strong predictors of baboon gut microbiota. Instead, gut microbiota were best explained by the baboons' environments, especially the soil's geologic history and exchangeable sodium. Indeed, soil effects were 15 times stronger than those of host–population F ST, perhaps because soil predicts which foods are present, or because baboons are terrestrial and consume soil microbes incidentally with their food. Our results support an emerging picture in which environmental variation is the dominant predictor of host-associated microbiomes. We are the first to show that such effects overshadow host species identity among members of the same primate genus.

2018 ◽  
Vol 87 (2) ◽  
pp. 105-132 ◽  
Author(s):  
Nikol Kmentová ◽  
Maarten Van Steenberge ◽  
Joost A.M. Raeymaekers ◽  
Stephan Koblmüller ◽  
Pascal I. Hablützel ◽  
...  

Whereas Lake Tanganyika’s littoral and benthic zones are famous for their diverse fish communities, its pelagic zone is dominated by few species, of which two representatives of Clupeidae (Limnothrissa miodon and Stolothrissa tanganicae) take a pivotal role. We investigated the monogenean fauna infecting these freshwater clupeids to explore the link between parasite morphology and host species identity, or seasonal and geographical origin, which may reveal host population structure. Furthermore, we conducted phylogenetic analyses to test whether these parasitic flatworms mirror their host species’ marine origin. Based on 406 parasite specimens infecting 385 host specimens, two monogenean species of Kapentagyrus Kmentová, Gelnar and Vanhove, gen. nov. were morphologically identified and placed in the phylogeny of Dactylogyridae using three molecular markers. One of the species, Kapentagyrus limnotrissae comb. nov., is host-specific to L. miodon while its congener, which is new to science and described as Kapentagyrus tanganicanus Kmentová, Gelnar and Vanhove, sp. nov., is infecting both clupeid species. Morphometrics of the parasites’ hard parts showed intra-specific variability, related to host species identity and seasonality in K. tanganicanus. Significant intra-specific differences in haptor morphometrics between the northern and southern end of Lake Tanganyika were found, and support the potential use of monogeneans as tags for host population structure. Based on phylogenetic inference, we suggest a freshwater origin of the currently known monogenean species infecting clupeids in Africa, with the two species from Lake Tanganyika representing a quite distinct lineage.


Author(s):  
Haibo Fu ◽  
Liangzhi Zhang ◽  
Chao Fan ◽  
Chuanfa Liu ◽  
Wenjing Li ◽  
...  

2021 ◽  
Author(s):  
Jennifer L. Houtz ◽  
Jon G. Sanders ◽  
Anthony Denice ◽  
Andrew H. Moeller

Author(s):  
Steven J. Presley ◽  
Joerg Graf ◽  
Ahmad F. Hassan ◽  
Anna R. Sjodin ◽  
Michael R. Willig

2021 ◽  
Vol 9 (2) ◽  
pp. 278
Author(s):  
Shen Jean Lim ◽  
Miriam Aguilar-Lopez ◽  
Christine Wetzel ◽  
Samia V. O. Dutra ◽  
Vanessa Bray ◽  
...  

The preterm infant gut microbiota is influenced by environmental, endogenous, maternal, and genetic factors. Although siblings share similar gut microbial composition, it is not known how genetic relatedness affects alpha diversity and specific taxa abundances in preterm infants. We analyzed the 16S rRNA gene content of stool samples, ≤ and >3 weeks postnatal age, and clinical data from preterm multiplets and singletons at two Neonatal Intensive Care Units (NICUs), Tampa General Hospital (TGH; FL, USA) and Carle Hospital (IL, USA). Weeks on bovine milk-based fortifier (BMF) and weight gain velocity were significant predictors of alpha diversity. Alpha diversity between siblings were significantly correlated, particularly at ≤3 weeks postnatal age and in the TGH NICU, after controlling for clinical factors. Siblings shared higher gut microbial composition similarity compared to unrelated individuals. After residualizing against clinical covariates, 30 common operational taxonomic units were correlated between siblings across time points. These belonged to the bacterial classes Actinobacteria, Bacilli, Bacteroidia, Clostridia, Erysipelotrichia, and Negativicutes. Besides the influence of BMF and weight variables on the gut microbial diversity, our study identified gut microbial similarities between siblings that suggest genetic or shared maternal and environmental effects on the preterm infant gut microbiota.


Parasitology ◽  
2009 ◽  
Vol 136 (10) ◽  
pp. 1121-1131 ◽  
Author(s):  
L. MARIA ◽  
E. SVENSSON ◽  
ROBERT E. RICKLEFS

SUMMARYCommon bird species were screened during May and June 2007 on Barbados for haemosporidian parasites (Haemosporida) of the genera Haemoproteus and Plasmodium to determine whether the low parasite diversity reported in previous studies might have reflected limited sampling. PCR screening and DNA sequencing revealed a single predominant lineage of Haemoproteus identified as H. coatneyi. Sixty-two out of 257 birds were infected with Haemoproteus spp. on Barbados in 2007. Fifty-nine of the infections were identified as H. coatneyi (lineage HC), the only lineage recovered in the previous study in 1993. Two of the infections recovered from the bananaquit (Coereba flaveola) were identified as Haemoproteus spp. (lineage HD), which is the prevalent haemosporidian parasite in C. flaveola on Grenada. We discuss the possibility of infrequent colonization events and absence of vectors as explanations for Barbados's low avian haemosporidian diversity. In our study, the parasites were absent from the southeast of the island, whereas they were abundant in several host species in the northwest. Accordingly, environmental and host population genetic differences were also investigated between the areas with and without parasites. No host genetic differences were found between the parasite-free and the parasite-afflicted regions. However, the parasite-free region is slightly warmer and drier, and it supports less vegetation than the parasite-afflicted region. The influence that this harsher environment may have on vector survival is discussed.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6658 ◽  
Author(s):  
Bing Zhang ◽  
Jing Ren ◽  
Daode Yang ◽  
Shuoran Liu ◽  
Xinguo Gong

Background The gut microbiota plays an important role in host immunity and metabolic homeostasis. Although analyses of gut microbiotas have been used to assess host health and foster disease prevention and treatment, no comparative comprehensive study, assessing gut microbiotas among several species of farmed snake, is yet available. In this study, we characterized and compared the gut microbiotas of four species of farmed snakes (Naja atra, Ptyas mucosa, Elaphe carinata, and Deinagkistrodon acutus) using high-throughput sequencing of the 16S rDNA gene in southern China and tested whether there was a relationship between gut microbiotal composition and host species. Results A total of 629 operational taxonomic units across 22 samples were detected. The five most abundant phyla were Bacteroidetes, Proteobacteria, Firmicutes, Fusobacteria, and Actinobacteria, while the five most abundant genera were Bacteroides, Cetobacterium, Clostridium, Plesiomonas, and Paeniclostridium. This was the first report of the dominance of Fusobacteria and Cetobacterium in the snake gut. Our phylogenetic analysis recovered a relatively close relationship between Fusobacteria and Bacteroidetes. Alpha diversity analysis indicated that species richness and diversity were highest in the gut microbiota of D. acutus and lowest in that of E. carinata. Significant differences in alpha diversity were detected among the four farmed snake species. The gut microbiotas of conspecifics were more similar to each other than to those of heterospecifics. Conclusion This study provides the first comparative study of gut microbiotas among several species of farmed snakes, and provides valuable data for the management of farmed snakes. In farmed snakes, host species affected the species composition and diversity of the gut microbiota.


Genes ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 484 ◽  
Author(s):  
Steury ◽  
Currey ◽  
Cresko ◽  
Bohannan

Much of animal-associated microbiome research has been conducted in species for which little is known of their natural ecology and evolution. Microbiome studies that combine population genetic, environment, and geographic data for wild organisms can be very informative, especially in situations where host genetic variation and the environment both influence microbiome variation. The few studies that have related population genetic and microbiome variation in wild populations have been constrained by observation-based kinship data or incomplete genomic information. Here we integrate population genomic and microbiome analyses in wild threespine stickleback fish distributed throughout western Oregon, USA. We found that gut microbiome diversity and composition partitioned more among than within wild host populations and was better explained by host population genetic divergence than by environment and geography. We also identified gut microbial taxa that were most differentially abundant across environments and across genetically divergent populations. Our findings highlight the benefits of studies that investigate host-associated microbiomes in wild organisms.


Parasitology ◽  
2000 ◽  
Vol 120 (3) ◽  
pp. 319-327 ◽  
Author(s):  
D. W. KELLY ◽  
C. E. THOMPSON

Existing models of the basic case reproduction number (R0) for vector-borne diseases assume (i) that the distribution of vectors over the susceptible host species is homogenous and (ii) that the biting preference for the susceptible host species rather than other potential hosts is a constant. Empirical evidence contradicts both assumptions, with important consequences for disease transmission. In this paper we develop an Ideal Free Distribution (IFD) model of host choice by blood-sucking insects, predicated on the argument that vectors must have evolved to choose the least defensive hosts in order to maximize their feeding success. From a re-analysis of existing data, we demonstrate that the interference constant, m, of the IFD can vary between host species. As a result, the predicted distribution of insects over hosts has 2 desirable and intuitively plausible behaviours: that it is heterogeneous both within and between host species; and that the intensity of heterogeneity varies with host and vector density. When the IFD model is incorporated into R0, the relationship with the vector: host ratio becomes non-linear. If correct, the IFD could add considerable realism to models which seek to predict the effect of these ecological parameters on disease transmission as they vary naturally (e.g. through seasonality in vector density or host population movement) or as a consequence of artificial manipulation (e.g. zooprophylaxis, vector control). It raises the possibility of targeting transmission hot spots with greater accuracy and concomitant reduction in control effort. The robustness of the model to simplifying assumptions is discussed.


2020 ◽  
Vol 11 ◽  
Author(s):  
Jinmei Ding ◽  
Ting Jiang ◽  
Hao Zhou ◽  
Lingyu Yang ◽  
Chuan He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document