scholarly journals Mitochondrial-Y chromosome epistasis in Drosophila melanogaster

2020 ◽  
Vol 287 (1937) ◽  
pp. 20200469
Author(s):  
J. Arvid Ågren ◽  
Manisha Munasinghe ◽  
Andrew G. Clark

The coordination between mitochondrial and nuclear genes is crucial to eukaryotic organisms. Predicting the nature of these epistatic interactions can be difficult because of the transmission asymmetry of the genes involved. While autosomes and X-linked genes are transmitted through both sexes, genes on the Y chromosome and in the mitochondrial genome are uniparentally transmitted through males and females, respectively. Here, we generate 36 otherwise isogenic Drosophila melanogaster strains differing only in the geographical origin of their mitochondrial genome and Y chromosome, to experimentally examine the effects of the uniparentally inherited parts of the genome, as well as their interaction, in males. We assay longevity and gene expression through RNA-sequencing. We detect an important role for both mitochondrial and Y-linked genes, as well as extensive mitochondrial-Y chromosome epistasis. In particular, genes involved in male reproduction appear to be especially sensitive to such interactions, and variation on the Y chromosome is associated with differences in longevity. Despite these interactions, we find no evidence that the mitochondrial genome and Y chromosome are co-adapted within a geographical region. Overall, our study demonstrates a key role for the uniparentally inherited parts of the genome for male biology, but also that mito-nuclear interactions are complex and not easily predicted from simple transmission asymmetries.

2019 ◽  
Author(s):  
J. Arvid Ågren ◽  
Manisha Munasinghe ◽  
Andrew G. Clark

AbstractThe coordination between mitochondrial and nuclear genes is crucial to eukaryotic organisms. Predicting the nature of these epistatic interactions can be difficult because of the transmission asymmetry of the genes involved. While autosomes and X-linked genes are transmitted through both sexes, genes on the Y chromosome and in the mitochondrial genome are uniparentally transmitted through males and females respectively. Here, we generate 36 otherwise isogenic Drosophila melanogaster strains differing only in the geographical origin of their mitochondrial genome and Y chromosome to experimentally examine the effects of the uniparentally inherited parts of the genome, as well as their interaction, in males. We assay longevity and gene expression through RNA-sequencing. We detect an important role for both mitochondrial and Y-linked genes, as well as extensive mitochondrial-Y chromosome epistasis, in both traits. In particular, genes involved in male reproduction appear to be especially sensitive. Despite these interactions, we find no evidence that the mitochondrial genome and Y chromosome are co-adapted within a geographic region. Overall, our study demonstrates a key role for the uniparentally inherited parts of the genome for male biology, but also that mito-nuclear interactions are complex and not easily predicted from simple transmission asymmetries.


Genome ◽  
2002 ◽  
Vol 45 (6) ◽  
pp. 1025-1034 ◽  
Author(s):  
M L Balasov

The position effect of the AR 4-24 P[white, rosy] transposon was studied at cytological position 60F. Three copies of the transposon (within ~50-kb region) resulted in a spatially restricted pattern of white variegation. This pattern was modified by temperature and by removal of the Y chromosome, suggesting that it was due to classical heterochromatin-induced position effect variegation (PEV). In contrast with classical PEV, extra dose of the heterochromatin protein 1 (HP1) suppressed white variegation and one dose enhanced it. The effect of Pc-G, trx-G, and other PEV suppressors was also tested. It was found that E(Pc)1, TrlR85, and mutations of Su(z)2C relieve AR 4-24- silencing and z1 enhances it. To explain the results obtained with these modifiers, it is proposed that PEV and telomeric position effect can counteract each other at this particular cytological site.Key words: position effect variegation, heterochromatin protein 1, Drosophila melanogaster.


2021 ◽  
Vol 15 ◽  
Author(s):  
Thiago C. Moulin ◽  
Federico Ferro ◽  
Angela Hoyer ◽  
Pierre Cheung ◽  
Michael J. Williams ◽  
...  

More than 320 million people live with depression in the world, a disorder that severely limits psychosocial functioning and diminishes quality of life. The prevalence of major depression is almost two times higher in women than in men. However, the molecular mechanisms of its sex-specific pathophysiology are still poorly understood. Drosophila melanogaster is an established model for neurobiological research of depression-like states, as well as for the study of molecular and genetic sex differences in the brain. Here, we investigated sex-specific effects on forced-climbing locomotion (negative geotaxis) and gene expression of a fly model of depression-like phenotypes induced by levodopa administration, which was previously shown to impair normal food intake, mating frequency, and serotonin concentration. We observed that both males and females show deficits in the forced-climbing paradigm; however, modulated by distinct gene expression patterns after levodopa administration. Our results suggest that Drosophila models can be a valuable tool for identifying the molecular mechanisms underlying the difference of depressive disorder prevalence between men and women.


Genetics ◽  
2002 ◽  
Vol 162 (3) ◽  
pp. 1245-1258
Author(s):  
Keith A Maggert ◽  
Kent G Golic

Abstract Genomic imprinting is well known as a regulatory property of a few specific chromosomal regions and leads to differential behavior of maternally and paternally inherited alleles. We surveyed the activity of two reporter genes in 23 independent P-element insertions on the heterochromatic Y chromosome of Drosophila melanogaster and found that all but one location showed differential expression of one or both genes according to the parental source of the chromosome. In contrast, genes inserted in autosomal heterochromatin generally did not show imprint-regulated expression. The imprints were established on Y-linked transgenes inserted into many different sequences and locations. We conclude that genomic imprinting affecting gene expression is a general property of the Drosophila Y chromosome and distinguishes the Y from the autosomal complement.


2021 ◽  
Author(s):  
Ashley R Albright ◽  
Michael R Stadler ◽  
Michael Eisen

Our current understanding of the regulation of gene expression in the early Drosophila melanogaster embryo comes from observations of a few genes at a time, as with in situ hybridizations, or observation of gene expression levels without regards to patterning, as with RNA-sequencing. Single-nucleus RNA-sequencing however, has the potential to provide new insights into the regulation of gene expression for many genes at once while simultaneously retaining information regarding the position of each nucleus prior to dissociation based on patterned gene expression. In order to establish the practicality of single-nucleus RNA sequencing in the context of a real biological question, here we look at the difference in gene expression between control and an insulator protein, dCTCF, maternal null embryos during zygotic genome activation at nuclear cycle 14. We find that early embryonic nuclei can be grouped into distinct clusters according to gene expression. From both virtual and published in situ hybridizations, we also find that these clusters correspond to spatial regions of the embryo. Lastly, we present multiple examples of differential gene expression between control and maternal CTCF null nuclei in one or more clusters, but not in bulk when grouping expression across all nuclei. These results highlight the potential for single-nucleus RNA-sequencing to reveal new insights into the regulation of gene expression in the early Drosophila melanogaster embryo.


Genetics ◽  
2000 ◽  
Vol 156 (1) ◽  
pp. 269-282
Author(s):  
Toshiyuki Takano-Shimizu

Abstract Interspecific cross is a powerful means to uncover hidden within- and between-species variation in populations. One example is a bristle loss phenotype of hybrids between Drosophila melanogaster and D. simulans, although both the pure species have exactly the same pattern of bristle formation on the notum. There exists a large amount of genetic variability in the simulans populations with respect to the number of missing bristles in hybrids, and the variation is largely attributable to simulans X chromosomes. Using nine molecular markers, I screened the simulans X chromosome for genetic factors that were responsible for the differences between a pair of simulans lines with high (H) and low (L) missing bristle numbers. Together with duplication-rescue experiments, a single major quantitative locus was mapped to a 13F–14F region. Importantly, this region accounted for most of the differences between H and L lines in three other independent pairs, suggesting segregation of H and L alleles at the single locus in different populations. Moreover, a deficiency screening uncovered several regions with factors that potentially cause the hybrid bristle loss due to epistatic interactions with the other factors.


Sign in / Sign up

Export Citation Format

Share Document