scholarly journals IV. On the blue colour of the sky, the polarization of skylight, and on the polarization of light by cloudy matter generally

1869 ◽  
Vol 17 ◽  
pp. 223-233 ◽  

Since the communication of my brief abstract “On a new Series of Chemical Reactions produced by Light,” the experiments upon this subject have been continued, and the number of the substances thus acted on considerably augmented. New relations have also been established between mixed vapours when subjected to the action of light. I now beg to draw the attention of the Royal Society to two questions glanced at incidentally in the abstract referred to,—the blue colour of the sky, and the polarization of skylight. Reserving the historic treatment of the subject for a more fitting occasion, I would merely mention now that these questions constitute, in the opinion of our most eminent authorities, the two great standing enigmas of meteorology. Indeed it was the interest manifested in them by Sir John Herschel, in a letter of singular speculative power, that caused me to enter upon the consideration of these questions so soon.

1845 ◽  
Vol 135 ◽  
pp. 269-282 ◽  

In a former paper, inserted in the Philosophical transactions, 1843, Part I., I detailed observations on some phenomena of elliptic polarization by reflexion from certain metallic surfaces; but with reference only to one class of comparative results. From these I have been led to pursue the subject into other relations besides those at first contemplated; but, from various causes, have only been able tat this interval to submit to the results to the Royal Society as a sequel to my former observations. The changes in the degree of ellipticity, investigated in my former paper, correspond to certain changes in the thickness of metallic films . If we now consider the case of reflexion from a simple polished metallic surface , and admit that in this case it may be supposed to take place by the penetration of the ray to a certain minute depth, or to some action of a thin transparent lamina of the metal, then, in like manner, —dependent on the law of metallic retardation, —the effect would vary with a difference in the effective thickness of the lamina, produced by changing the inclination of the incident ray; and that this is the case in general is well known, viz. that as the incidence is increased, the ellipticity increases up to a maximum, which occurs for most metals at an incidence between 70° and 80°, beyond which it decreases up to 90°.


1830 ◽  
Vol 120 ◽  
pp. 69-84

In the year 1815 I communicated to the Royal Society a series of experiments on the polarization of light by successive reflexions, which contain the germ of the investigations, the results of which I now propose to explain. From these experiments it appeared that a given pencil of light could be wholly polarized at any angle of incidence, provided it underwent a sufficient number of reflexions, either at angles wholly above or wholly below the maximum polarizing angle, or at angles partly above and partly below that angle; and it was scarcely possible to resist the conclusion, that the light not polarized by the first reflexion had suffered a physical change at each action of the reflecting force which brought it nearer and nearer to the state of complete polarization. This opinion, however, which I have always regarded as demonstrable, appeared in a different light to others. Guided probably by an experimental result, apparently though not really hostile to it, Dr. Young and MM. Biot, Arago, and Fresnel, have adhered to the original opinion of Malus, that the reflected and refracted pencils consist partly of light wholly polarized, and partly of light in its natural state; and more recently Mr. Herschel has given the weight of his opinion to the same view of the subject.


1830 ◽  
Vol 120 ◽  
pp. 133-144 ◽  

In the autumn of 1813 I announced to the Royal Society the discovery which I had then made of the polarization of light by refraction; and in the November following I communicated an extensive series of experiments which established the general law of the phænomena. During the sixteen years which have since elapsed, the subject does not seem to have made any progress. From experiments indeed stated to have been performed at all angles of incidence with plates of glass, M. Arago announced that the quantity of light which the plate polarized by reflexion at any given angle was equal to the quantity polarized by transmission; but this result, founded upon incorrect observation, led to false views, and thus contributed to stop the progress of this branch of optics. I had shown in 1813, from incontrovertible experiments, that the action of each refracting surface in polarizing light, produced a physical change on the refracted pencil, and brought it into a state approaching more and more to that of complete polarization. But this result, which will be presently demonstrated, was opposed as hypothetical by Dr. Young and the French philosophers; and Mr. Herschel has more recently given it as his decision, that of the two contending opinions, that which was first asserted by Malus, and subsequently maintained by Biot, Arago, and Fresnel, is the most probable, —namely, that the unpolarized part of the pencil, in place of having suffered any physical change, retains the condition of common light.


1852 ◽  
Vol 142 ◽  
pp. 463-562 ◽  

The following researches originated in a consideration of the very remarkable phenomenon discovered by Sir John Herschel in a solution of sulphate of quinine, and described by him in two papers printed in the Philosophical Transactions for 1845, entitled ‘On a Case of Superficial Colour presented by a Homogeneous Liquid internally colourless,’ and 'On the Epipolic Dispersion of Light.’ The solution of quinine, though it appears to be perfectly transparent and colourless, like water, when viewed by transmitted light, exhibits nevertheless in certain aspects, and under certain incidences of the light, a beautiful celestial blue colour. It appears from the experiments of Sir John Herschel that the blue colour comes only from a stratum of fluid of small but finite thickness adjacent to the surface by which the light enters. After passing through this stratum, the incident light, though not sensibly enfeebled nor coloured, has lost the power of producing the same effect, and therefore may be considered as in some way or other qualitatively different from the original light. The dispersion which takes place near the surface of this liquid is called by Sir John Herschel epipolic , and he applies the term epipolized to a beam of light which, having been transmitted through a quiniferous solution, has been thereby rendered incapable of further undergoing epipolic dispersion. In one experiment, in which sun-light was used, a feeble blue gleam was observed to extend to nearly half an inch from the surface. As regards the dispersed light itself, when analysed by a prism it was found to consist of rays extending over a great range of refrangibility: the less refrangible extremity of the spectrum was however wanting. On being analysed by a tourmaline, it showed no signs of polarization. A special experiment showed that the dispersed light was perhaps incapable, at any rate not peculiarly susceptible, of being again dispersed. In a paper 'On the Decomposition and Dispersion of Light within Solid and Fluid Bodies,’ read before the Royal Society of Edinburgh in 1846, and printed in the 16th volume of their Transactions, as well as in the Philosophical Magazine for June 1848, Sir David Brewster notices these results of Sir John Herschel’s, and states the conclusions, in some respects different, at which he had arrived by operating in a different way. The phenomenon of internal dispersion had been discovered by him some years before, and is briefly noticed in a paper read before the Royal Society of Edinburgh in 1833. It is described at length, as exhibited in the particular case of fluor-spar, in a paper communicated to the British Association at Newcastle in 1838. In Sir David Brewster’s experiments the sun’s light was condensed by a lens, and so admitted into the solid or fluid to be examined; which afforded peculiar facilities for the study of the phenomena. On examining in this way a solution of sulphate of quinine, it was found that light was dispersed, not merely close to the surface, but at a long distance within the fluid: and Sir David Brewster was led to conclude that the dispersion produced by sulphate of quinine was only a particular case of the general phenomenon of internal dispersion. On analysing the blue beam by a rhomb of calcareous spar, it was found that a considerable portion of it, consisting chiefly of the less refrangible rays, was polarized in the plane of reflexion, while the more refrangible of its rays, constituting an intensely blue beam, had a different polarization.


Author(s):  
Peter Atkins

Illustrated with remarkable new full-color images--indeed, one or more on every page--and written by one of the world's leading authorities on the subject, Reactions offers a compact, pain-free tour of the inner workings of chemistry. Reactions begins with the chemical formula almost everyone knows--the formula for water, H2O--a molecule with an "almost laughably simple chemical composition." But Atkins shows that water is also rather miraculous--it is the only substance whose solid form is less dense than its liquid (hence ice floats in water)--and incredibly central to many chemical reactions, as it is an excellent solvent, being able to dissolve gases and many solids. Moreover, Atkins tells us that water is actually chemically aggressive, and can react with and destroy the compounds dissolved in it, and he shows us what happens at the molecular level when water turns to ice--and when it melts. Moving beyond water, Atkins slowly builds up a toolkit of basic chemical processes, including precipitation (perhaps the simplest of all chemical reactions), combustion, reduction, corrosion, electrolysis, and catalysis. He then shows how these fundamental tools can be brought together in more complex processes such as photosynthesis, radical polymerization, vision, enzyme control, and synthesis. Peter Atkins is the world-renowned author of numerous best-selling chemistry textbooks for students. In this crystal-clear, attractively illustrated, and insightful volume, he provides a fantastic introductory tour--in just a few hundred colorful and lively pages - for anyone with a passing or serious interest in chemistry.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 927
Author(s):  
Thiago Gonçalves ◽  
Ulrich Vasconcelos

Pyocyanin was the first natural phenazine described. The molecule is synthesized by about 95% of the strains of Pseudomonas aeruginosa. From discovery up to now, pyocyanin has been characterised by a very rich and avant-garde history, which includes its use in antimicrobial therapy, even before the discovery of penicillin opened the era of antibiotic therapy, as well as its use in electric current generation. Exhibiting an exuberant blue colour and being easy to obtain, this pigment is the subject of the present review, aiming to narrate its history as well as to unveil its mechanisms and suggest new horizons for applications in different areas of engineering, biology and biotechnology.


1881 ◽  
Vol 32 (212-215) ◽  
pp. 407-408

During the progress of the investigations which I have from time to time had the honour of bringing under the notice of the Royal Society, I have again and again noticed the apparent disappearance of gases inclosed in vessels of various materials when the disappearance could not be accounted for upon the assumption of ordinary leakage. After a careful examination of the subject I found that the solids absorbed or dissolved the gases, giving rise to a striking example of the fixation of a gas in a solid without chemical action. In carrying out that most troublesome investigation, the crystalline separation of carbon from its compounds, the tubes used for experiment have been in nine cases out of ten found to be empty on opening them, and in most cases a careful testing by hydraulic press showed no leakage. The gases seemed to go through the solid iron, although it was 2 inches thick. A series of experiments with various linings were tried. The tube was electro-plated with copper, silver, and gold, but with no greater success. Siliceous linings were tried fusible enamels and glass—but still the' tubes refused to hold the contents. Out of thirty-four experiments made since my last results were published, only four contained any liquid or condensed gaseous matter after the furnacing. I became convinced that the solid matter at the very high pressure and temperature used must be pervious to gases.


The papers in this symposium form the proceeding of the Royal Society’s Discussion Meeting held in March 1993. As co-organizers and editors, we trust that we have put together a timely, enterprising and enlightening volume which provides a fitting tribute to Alan Williams. It was Alan who first promoted to the Royal Society the subject of CD4 as a topic for one of the Society’s Discussion Meetings and who agreed to be cast in the role of organizer. After Alan’s untimely death, as coorganizers we were given the choice of proceeding with the meeting or not, and it was decided to proceed as a memorial to Alan. We are certain that it was exactly what Alan would have wanted us to do.


1844 ◽  
Vol 15 (1) ◽  
pp. 37-65
Author(s):  
P. Kelland

The present Memoir is, to a certain extent, a continuation of one which the author presented to the Society in December 1838, and which has since been published in the thirteenth volume of the Transactions. Other motives, however, than the desire of completing the subject, have influenced him in producing the following analysis. A very important point in the hypothetical conditions which Fresnel assumed to hold with respect to polarized light, has, of late, been warmly combated in various quarters. Fresnel supposed that light polarized in a given plane consists of vibrations of such a nature that the motion is perpendicular to that plane. Neumann and other writers contend that the very opposite is the fact. We hope to be able to offer evidence of some little weight in favour of the former view; at the same time we do not pretend to shew the actual impossibility of the truth of the latter.


1832 ◽  
Vol 122 ◽  
pp. 539-574 ◽  

I have for some time entertained an opinion, in common with some others who have turned their attention tot he subject, that a good series of observations with a Water-Barometer, accurately constructed, might throw some light upon several important points of physical science: amongst others, upon the tides of the atmosphere; the horary oscillations of the counterpoising column; the ascending and descending rate of its greater oscillations; and the tension of vapour at different atmospheric temperatures. I have sought in vain in various scientific works, and in the Transactions of Philosophical Societies, for the record of any such observations, or for a description of an instrument calculated to afford the required information with anything approaching to precision. In the first volume of the History of the French Academy of Sciences, a cursory reference is made, in the following words, to some experiments of M. Mariotte upon the subject, of which no particulars appear to have been preserved. “Le même M. Mariotte fit aussi à l’observatoire des experiences sur le baromètre ordinaire à mercure comparé au baromètre à eau. Dans l’un le mercure s’eléva à 28 polices, et dans Fautre l’eau fut a 31 pieds Cequi donne le rapport du mercure à l’eau de 13½ à 1.” Histoire de I'Acadérmie, tom. i. p. 234. It also appears that Otto Guricke constructed a philosophical toy for the amusement of himself and friends, upon the principle of the water-barometer; but the column of water probably in this, as in all the other instances which I have met with, was raised by the imperfect rarefaction of the air in the tube above it, or by filling with water a metallic tube, of sufficient length, cemented to a glass one at its upper extremity, and fitted with a stop-cock at each end; so that when full the upper one might be closed and the lower opened, when the water would fall till it afforded an equipoise to the pressure of the atmo­sphere. The imperfections of such an instrument, it is quite clear, would render it totally unfit for the delicate investigations required in the present state of science; as, to render the observations of any value, it is absolutely necessary that the water should be thoroughly purged of air, by boiling, and its insinuation or reabsorption effectually guarded against. I was convinced that the only chance of securing these two necessary ends, was to form the whole length of tube of one piece of glass, and to boil the water in it, as is done with mercury in the common barometer. The practical difficulties which opposed themselves to such a construction long appeared to me insurmount­able; but I at length contrived a plan for the purpose, which, having been honoured with the approval of the late Meteorological Committee of this Society, was ordered to be carried into execution by the President and Council.


Sign in / Sign up

Export Citation Format

Share Document