Radio propagation over a flat Earth across a boundary separating two different media

A theoretical investigation is given of the phenomena arising when vertically polarized radio waves are propagated across a boundary between two homogeneous sections of the earth’s surface which have different complex permittivities. The problem is treated in a two-dimensional form, but the results, when suitably interpreted, are valid for a dipole source. The earth’s surface is assumed to be flat. In the first part of the paper one section of the earth is taken to have infinite conductivity and is represented by an infinitely thin, perfectly conducting half-plane lying in the surface of an otherwise homogeneous earth. The resulting boundary-value problem is initially solved for a plane wave incident at an arbitrary angle; the scattered field due to surface currents induced in the perfectly conducting sheet is expressed as an angular spectrum of plane waves, and this formulation leads to dual integral equations which are treated rigorously by the methods of contour integration. The solution for a line-source is then derived by integration of the plane-wave solutions over an appropriate range of angles of incidence, and is reduced to a form in which the new feature is an integral of the type missing text where a and b are in general complex within a certain range of argument.

In the last few years Copson, Schwinger and others have obtained exact solutions of a number of diffraction problems by expressing these problems in terms of an integral equation which can be solved by the method of Wiener and Hopf. A simpler approach is given, based on a representation of the scattered field as an angular spectrum of plane waves, such a representation leading directly to a pair of ‘dual’ integral equations, which replaces the single integral equation of Schwinger’s method. The unknown function in each of these dual integral equations is that defining the angular spectrum, and when this function is known the scattered field is presented in the form of a definite integral. As far as the ‘radiation’ field is concerned, this integral is of the type which may be approximately evaluated by the method of steepest descents, though it is necessary to generalize the usual procedure in certain circumstances. The method is appropriate to two-dimensional problems in which a plane wave (of arbitrary polarization) is incident on plane, perfectly conducting structures, and for certain configurations the dual integral equations can be solved by the application of Cauchy’s residue theorem. The technique was originally developed in connexion with the theory of radio propagation over a non-homogeneous earth, but this aspect is not discussed. The three problems considered are those for which the diffracting plates, situated in free space, are, respectively, a half-plane, two parallel half-planes and an infinite set of parallel half-planes; the second of these is illustrated by a numerical example. Several points of general interest in diffraction theory are discussed, including the question of the nature of the singularity at a sharp edge, and it is shown that the solution for an arbitrary (three-dimensional) incident field can be derived from the corresponding solution for a two-dimensional incident plane wave.


1964 ◽  
Vol 42 (8) ◽  
pp. 1455-1468 ◽  
Author(s):  
E. V. Jull

The diffraction of a plane electromagnetic wave by a perfectly conducting half-plane in an anisotropic plasma is considered. The plasma is characterized by a permittivity tensor and the wave is assumed to propagate in a direction normal to the magnetostatic field and the diffracting edge, but its angle of incidence is otherwise arbitrary. Only the H-polarized wave of the incident field, which has a single magnetic field component parallel to the edge, is affected by the anisotropy and the analysis is restricted accordingly. Representing the scattered field as an angular spectrum of plane waves leads to dual integral equations from which an expression for the scattered field is obtained. The total field is then reduced to Fresnel integrals and its far-field behavior is investigated. Agreement with Seshadri and Rajagopal's result for a wave normally incident on the conductor, which was obtained by using the Wiener–Hopf technique, is found. The differences between isotropic and anisotropic solutions to this problem, which arise from the differing boundary conditions on the tangential magnetic field, are examined.


An electric Hertzian dipole is immersed in a cold homogeneous magnetoplasma and it is required to calculate the electromagnetic field at a moderate or great distance. Known methods of doing this are reviewed and extended. They all, in effect, express the field as an integral representing an angular spectrum of plane waves or of waves with conical wavefronts. The integral is evaluated by the method of steepest descents and extensions of it. Results are then presented of some calculations for various plasmas containing one or more species of positive ion. A study is made of the dependence of the radiated field, and of its Poynting vector, on direction and on frequency, when the source dipole is parallel to the superimposed magnetic field. There are three conditions where signals of large or very large amplitude can occur, namely ( a ) enhancement for directions very close to the direction of the superimposed magnetic field, ( b ) resonance cones, in which the signal is large for directions where the refractive index is very large, and ( c ) Storey cones and reversed Storey cones, which may be thought of as conical caustic surfaces where two rays have moved to coalescence and give constructive interference. These three features occur only in certain limited frequency ranges. The classification of these results is complicated and necessitates discussion of the transition frequencies of the plasma. For a plasma with more than one species of positive ion the phenomenon of crossover occurs, and its effect on the three types of signal enhancement is discussed.


Geophysics ◽  
1983 ◽  
Vol 48 (6) ◽  
pp. 655-664 ◽  
Author(s):  
Paul M. Krail ◽  
Henry Brysk

The solution of the elastic wave equation for a plane wave incident on a plane interface has been known since the turn of the century. For reflections from reasonably shallow beds, however, it is necessary to treat the incident wave as spherical rather than plane. The formalism for expressing spherical wavefronts as contour integrals over plane waves goes back to Sommerfeld (1909) and Weyl (1919). Brekhovskikh (1960) performed a steepest descent evaluation of the integrals to attain analytic results in the acoustic case. We have extended his approach to elastic waves to obtain spherical‐wave Zoeppritz coefficients. We illustrate the impact of the curvature correction parametrically (as the velocity and density contrasts and Poisson’s ratios are varied). In particular, we examine conditions appropriate to “bright spot” analysis; expectedly, the situation becomes less simple than in the plane‐wave limit. The curvature‐corrected Zoeppritz coefficients vary more strongly (and in a more complicated manner) with the angle of incidence than do the original ones. The determination of material properties (velocities and densities) from the reflection coefficients is feasible in principle, with exacting prestack processing and interpretation. For orientation, we outline the procedure for the simple case of a separated single source and detector pair over a multilayered horizontal earth.


1964 ◽  
Vol 42 (6) ◽  
pp. 1149-1184 ◽  
Author(s):  
R. F. Millar

A time-harmonic, plane wave is incident on a semiinfinite grating of identical, but otherwise arbitrary, cylinders. The scattered field is expressed as an angular spectrum of plane waves with an unknown scattering amplitude function. By decomposing the grating into two "bodies" (namely the first N elements and the remaining infinity of elements), integral equations are derived for the unknown. The case N = 1 leads to two integral equations which relate the scattering functions of the grating and its end element to the scattering function of the end element in isolation. The case N → ∞ provides an equation relating the scattering function of the grating to that of an element in an infinite grating. The scattering function of the grating is shown to possess branch points in the complex planes of the angles of incidence (α) and observation (θ), and poles whose positions depend on both. The scattering function is examined in the neighborhood of the branch points. For all relative configurations of poles, θ, and branch points, the field far from the end element is calculated by asymptotic methods. Contributions arise from poles, branch-cut integrals, and a steepest-descent integral. Poles give rise to plane waves existing in wedge-shaped regions bounded on one side by the grating. Branch-cut integrals also yield waves in wedge-shaped regions; their contribution is usually negligible in comparison with that of the steepest-descent integral.


Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter examines solutions to the Maxwell equations in a vacuum: monochromatic plane waves and their polarizations, plane waves, and the motion of a charge in the field of a wave (which is the principle upon which particle detection is based). A plane wave is a solution of the vacuum Maxwell equations which depends on only one of the Cartesian spatial coordinates. The monochromatic plane waves form a basis (in the sense of distributions, because they are not square-integrable) in which any solution of the vacuum Maxwell equations can be expanded. The chapter concludes by giving the conditions for the geometrical optics limit. It also establishes the connection between electromagnetic waves and the kinematic description of light discussed in Book 1.


2019 ◽  
Vol 32 (1) ◽  
Author(s):  
Xiaozhou Liu ◽  
Jian Ma ◽  
Haibin Wang ◽  
Sha Gao ◽  
Yifeng Li ◽  
...  

AbstractThe scattered fields of plane waves in a solid from a cylinder or sphere are critical in determining its acoustic characteristics as well as in engineering applications. This paper investigates the scattered field distributions of different incident waves created by elastic cylinders embedded in an elastic isotropic medium. Scattered waves, including longitudinal and transverse waves both inside and outside the cylinder, are described with specific modalities under an incident plane wave. A model with a scatterer embedded in a structural steel matrix and filled with aluminum is developed for comparison with the theoretical solution. The frequency of the plane wave ranged from 235 kHz to 2348 kHz, which corresponds to scaling factors from 0.5 to 5. Scattered field distributions in matrix materials blocked by an elastic cylindrical solid have been obtained by simulation or calculated using existing parameters. The simulation results are in good agreement with the theoretical solution, which supports the correctness of the simulation analysis. Furthermore, ultrasonic phased arrays are used to study scattered fields by changing the characteristics of the incident wave. On this foundation, a partial preliminary study of the scattered field distribution of double cylinders in a solid has been carried out, and the scattered field distribution at a given distance has been found to exhibit particular behaviors at different moments. Further studies on directivities and scattered fields are expected to improve the quantification of scattered images in isotropic solid materials by the phased array technique.


2020 ◽  
pp. 108128652096564
Author(s):  
Mriganka Shekhar Chaki ◽  
Victor A Eremeyev ◽  
Abhishek K Singh

In this work, the propagation behaviour of a surface wave in a micropolar elastic half-space with surface strain and kinetic energies localized at the surface and the propagation behaviour of an interfacial anti-plane wave between two micropolar elastic half-spaces with interfacial strain and kinetic energies localized at the interface have been studied. The Gurtin–Murdoch model has been adopted for surface and interfacial elasticity. Dispersion equations for both models have been obtained in algebraic form for two types of anti-plane wave, i.e. a Love-type wave and a new type of surface wave (due to micropolarity). The angular frequency and phase velocity of anti-plane waves have been analysed through a numerical study within cut-off frequencies. The obtained results may find suitable applications in thin film technology, non-destructive analysis or biomechanics, where the models discussed here may serve as theoretical frameworks for similar types of phenomena.


1993 ◽  
Vol 8 (9) ◽  
pp. 2344-2353 ◽  
Author(s):  
J-M. Berthelot ◽  
Souda M. Ben ◽  
J.L. Robert

The experimental study of wave attenuation in concrete has been achieved in the case of the propagation of plane waves in concrete rods. Different mortars and concretes have been investigated. A transmitter transducer coupled to one of the ends of the concrete rod generates the propagation of a plane wave in the rod. The receiver transducer, similar to the previous one, is coupled to the other end of the rod. The experimental results lead to an analytical expression for wave attenuation as function of the concrete composition, the propagation distance, and the wave frequency.


Sign in / Sign up

Export Citation Format

Share Document