source dipole
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 7)

H-INDEX

6
(FIVE YEARS 1)

Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. D181-D197
Author(s):  
Xiyong Yuan ◽  
Shaogui Deng ◽  
Yiren Fan ◽  
Xufei Hu ◽  
Zhenguan Wu ◽  
...  

The relative dip angle and anisotropy of the anisotropic formation are generally determined through an inversion process. We have studied the responses of the novel transient multicomponent induction logging method and find that all of the components measured in the instrument coordinate system have the same decay with time. However, the cross component decays much faster than the coaxial or coplanar components in the formation coordinate system. We adopt an algebraic time-domain method to calculate the dip angle and anisotropy coefficient and thereby avoid the inversion process. The accuracy and applicability of this pseudoinversion method are studied theoretically. Numerical results demonstrate that coaxial, coplanar, and cross components are used to calculate the apparent relative dip angle that yields the exactly true value at very early times and then goes through a transition deviating from the true dip and gradually approaches the true value again at late times. The apparent anisotropy is calculated by the coaxial and coplanar components and is equal to zero at early times and nonzero to the true anisotropy during the transition times. Moreover, by using realistic source dipole moments as well as adding random measurement errors, the practicality of this algebraic method is also investigated. Determination of the relative dip is still stable and valid. Determination of the anisotropy is more easily affected by measurement error and has some application limitations.


2020 ◽  
Author(s):  
Majid Memarian Sorkhabi ◽  
Moaad Benjaber ◽  
Peter Brown ◽  
Timothy Denison

AbstractThe accurate measurement of brain activity by Brain-Machine-Interfaces (BMI) and closed-loop Deep Brain Stimulators (DBS) is one of the most important steps in communicating between the brain and subsequent processing blocks. In conventional chest-mounted systems, frequently used in DBS, a significant amount of artifact can be induced in the sensing interface, often as a common-mode signal applied between the case and the sensing electrodes. Attenuating this common-mode signal can be a serious challenge in these systems due to finite commonmode-rejection-ratio (CMRR) capability in the interface. Emerging BMI and DBS devices are being developed which can mount on the skull. Mounting the system on the cranial region can potentially suppress these induced physiological signals by limiting the artifact amplitude. In this study, we model the effect of artifacts by focusing on cardiac activity, using a current-source dipole model in a torso-shaped volume conductor. Performing finite element simulation with the different DBS architectures, we estimate the ECG common mode artifacts for several device architectures. Using this model helps define the overall requirements for the total system CMRR to maintain resolution of brain activity. The results of the simulations estimate that the cardiac artifacts for skull-mounted systems will have a significantly lower effect than non-cranial systems that include the pectoral region. It is expected that with a pectoral mounted device, a minimum of 60-80 dB CMRR is required to suppress the ECG artifact, while in cranially-mounted devices, a 20 dB CMRR is sufficient, in the worst-case scenario. The methods used for estimating cardiac artifacts can be extended to other sources such as motion/muscle sources. The susceptibility of the device to artifacts has significant implications for the practical translation of closed-loop DBS and BMI, including the choice of biomarkers and the design requirements for insulators and lead systems.


2020 ◽  
Author(s):  
Liguo Jiao ◽  
Yu Lei

<p>Recent fast developments of satellite magnetic observations facilitate global Lithospheric Magnetic Field (LMF) modelling and their applications to subsurface tectonics. Here, the vertical component (B<sub>z</sub>) of LMF at an altitude of 200km in Mainland China and surroundings is calculated from two global LMF models NGDC-720 and EMM2017. Next, B<sub>z</sub> is used to invert the Curie Point Depth (CPD) by Equivalent Source Dipole (ESD) forward and Nonlinear Conjugate Gradient Method (NCGM) inversion scheme. Then, the surficial Heat Flux (HF) is derived by a simple one-dimensional steady heat conduction equation from the CPD distribution. At last, the continental seismicity is compared statistically to B<sub>z</sub>, CPD and HF. Our essential conclusions are as follow: 1) Histograms and boxplots show that most (81.8%) earthquakes (EQs, M<sub>s</sub>≥5.0) occurred in negative B<sub>z</sub> areas, and more than a half (53.2%) number of EQs (corresponding to an energy percent of 94.6%) occurred inside areas with B<sub>z</sub> between -5 and -3nT, in a period between 2004 and 2007, which is the same with the satellite data collection. When the time span is extended (most to 110 years), these phenomena maintain while weaken; 2) Most (88%) EQs occurred in areas with CPD between 10 and 30km, while only a few (7% and 5%) occurred in shallow (<10km) and deep (>30km) CPD areas, in a period between 2000 and 2010; 3) EQs seldom occurred inside cold areas (HF<50mW/m<sup>2</sup>), and are prone to occur in warm areas (HF>120mW/m<sup>2</sup>). EQs are also prone to occur along the boundaries of warm or cold areas. The mechanism of the correlations between EQs and B<sub>z</sub>, CPD and HF maybe the lithospheric strength jumps caused by the temperature variations at boundaries between blocks with different CPDs.</p>


2019 ◽  
Vol 874 ◽  
pp. 856-890 ◽  
Author(s):  
A. Choudhary ◽  
T. Renganathan ◽  
S. Pushpavanam

There has been a recent interest in integrating external fields with inertial microfluidic devices to tune particle focusing. In this work, we analyse the inertial migration of an electrophoretic particle in a two-dimensional Poiseuille flow with an electric field applied parallel to the walls. For a thin electrical double layer, the particle exhibits a slip-driven electrokinetic motion along the direction of the applied electric field, which causes the particle to lead or lag the flow (depending on its surface charge). The fluid disturbance caused by this slip-driven motion is characterized by a rapidly decaying source-dipole field which alters the inertial lift on the particle. We determine this inertial lift using the reciprocal theorem. Assuming no wall effects, we derive an analytical expression for a ‘phoretic lift’ which captures the modification to the inertial lift due to electrophoresis. We also take wall effects into account, at the leading order, using the method of reflections. We find that for a leading particle, the phoretic lift acts towards the regions of high shear (i.e. walls), while the reverse is true for a lagging particle. Using an order-of-magnitude analysis, we obtain different components of the inertial force and classify them on the basis of the interactions from which they emerge. We show that the dominant contribution to the phoretic lift originates from the interaction of the source-dipole field (generated by the electrokinetic slip at the particle surface) with the stresslet field (generated due to particle’s resistance to strain in the background flow). Furthermore, to contrast the slip-driven phenomenon (electrophoresis) from the force-driven phenomenon (buoyancy) in terms of their influence on the inertial migration, we also study a non-neutrally buoyant particle. We show that the gravitational effects alter the inertial lift primarily through the interaction of the background shear with the buoyancy-induced Stokeslet field.


2019 ◽  
Vol 9 (10) ◽  
pp. 1982 ◽  
Author(s):  
Giovanni Modanese

In systems with non-local potentials or other kinds of non-locality, the Landauer-Büttiker formula of quantum transport leads to replacing the usual gauge-invariant current density J with a current J e x t which has a non-local part and coincides with the current of the extended Aharonov-Bohm electrodynamics. It follows that the electromagnetic field generated by this current can have some peculiar properties and in particular the electric field of an oscillating dipole can have a long-range longitudinal component. The calculation is complex because it requires the evaluation of double-retarded integrals. We report the outcome of some numerical integrations with specific parameters for the source: dipole length ∼10−7 cm, frequency 10 GHz. The resulting longitudinal field E L turns out to be of the order of 10 2 to 10 3 times larger than the transverse component (only for the non-local part of the current). Possible applications concern the radiation field generated by Josephson tunnelling in thick superconductor-normal-superconductor (SNS) junctions in yttrium barium oxide (YBCO) and by current flow in molecular nanodevices.


2018 ◽  
Vol 32 (4) ◽  
pp. 704-719 ◽  
Author(s):  
M. Rubega ◽  
M. Carboni ◽  
M. Seeber ◽  
D. Pascucci ◽  
S. Tourbier ◽  
...  

2018 ◽  
Vol 276 ◽  
pp. 118-133 ◽  
Author(s):  
Diana Saturnino ◽  
Benoit Langlais ◽  
Hagay Amit ◽  
François Civet ◽  
Mioara Mandea ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document