The north sea storm surge of 31 January and 1 February 1953

Using observed hourly heights of tide at thirty-one stations in the North Sea and two in the English Channel, the storm surge of 31 January and 1 February 1953 has been investigated in the light of the meteorological conditions prevailing. The major cause of the disturbance is shown to be the strong northerly winds in and to the north of the North Sea, modified at each station by local wind and barometric effects. An increase of 2 ft. in the mean level of the North Sea during the disturbance has been deduced, and the response of the sea as a whole to the disturbing winds has been examined. Geostrophic effects have been remarked in both the growth and decay of the disturbance. Estimates have been made of the air/sea frictional coefficient on two separate occasions during the period considered, assuming the tractive force of the wind to vary as the square of its velocity. These estimates are in agreement with accepted values. The partial transmission of this large surge through the Straits of Dover has been shown as an im portant factor, influencing the levels immediately to the north of the Straits. Prediction of the surge at Southend by a previously established formula has given only fair results, but the errors have been explained in terms of the facts previously presented and the approximations upon which the formula is based. Suggestions for future research into the improvement of surge prediction formulae have been made.

2018 ◽  
Vol 45 ◽  
pp. 273-279 ◽  
Author(s):  
Anthony James Kettle

Abstract. Offshore energy infrastructure, including the petroleum and wind energy sectors, are susceptible to damage and interruption by extreme meteorological events. In northwest Europe and especially the North Sea, these extreme meteorological events are mostly associated with severe storms in the autumn and winter seasons. In the North Sea, storm surges have an impact on the offshore energy sector mainly from the flooding of port facilities and from strong ocean currents causing extra structural loading and bottom scouring. Storm Britta on 31 October–1 November 2006 was an important North Sea storm with a high surge along the coast of the Netherlands and Germany and a significant number of high wave reports. The paper presents an analysis of the national tide gauge records of the United Kingdom, the Netherlands, Germany, and Denmark to spectrally isolate and reconstruct time series components corresponding to the storm surge, semi-diurnal tide, and short period contribution. The semi-diurnal tides and storm surge during Storm Britta are tracked counter-clockwise around the North Sea from Scotland to northern Denmark. The storm surge was remarkable for its pronounced peak in the coastal area between the Netherlands and Germany with no precedent in the ∼100 year measurement record. The short period component of the tide gauge records show large oscillations during the height of the storm that may correspond with reports of unusually high waves at nearby coastal locations.


Author(s):  
J. N. Carruthers

In July–August of three different years common surface-floating bottles were set adrift at International Station E2 (49° 27' N.—4° 42' W.). With them, various types of drag-fitted bottles were also put out. The journeys accomplished are discussed, and the striking differences as between year and year in the case of the common surface floaters, and as between the different types in the same year, are commented upon in the light of the prevailing winds. An inter-relationship of great simplicity is deduced between wind speed and the rate of travel of simple surface floating bottles up-Channel and across the North Sea from the results of experiments carried out in four different summers.


1963 ◽  
Vol 20 (3) ◽  
pp. 789-826 ◽  
Author(s):  
B. McK. Bary

Monthly temperature-salinity diagrams for 1957 have demonstrated that three surface oceanic "water bodies" were consistently present in the eastern North Atlantic; two are regarded as modified North Atlantic Central water which give rise to the third by mixing. As well in the oceanic areas, large and small, high or low salinity patches of water were common. Effects of seasonal climatic fluctuations differed in the several oceanic water bodies. In coastal waters, differences in properties and in seasonal and annual cycles of the properties distinguish the waters from the North Sea, English Channel and the western entrance to the Channel.The geographic distributions of the oceanic waters are consistent with "northern" and "southern" water bodies mixing to form a "transitional" water. Within this distribution there are short-term changes in boundaries and long-term (seasonal) changes in size of the water bodies.Water in the western approaches to the English Channel appeared to be influenced chiefly by the mixed, oceanic transitional water; oceanic influences in the North Sea appear to have been from northern and transitional waters.


1906 ◽  
Vol 10 (40) ◽  
pp. 50-51

No fewer than seven nations tried to win the Gordon Bennett Cup in the race which started from the Tuileries Gardens, in Paris, on September 30th. But the wind was in an unfavourable direction for the accomplishment of a long distance record. To some, the English Channel barred the way, to some, the North Sea.The cup offered for the greatest distance covered has been accorded to the American aeronaut, Mr. Frank P. Lahm, who descended 15 miles north of Scarborough.It will be seen in another part of this Journal that in December next, Members of the Aëronautical Society of Great Britain will hear an account of the Gordon-Bennett race from Colonel J. E. Capper, who took part in the race, having accompanied Mr. Rolls in the “ Britannia.” In this account, therefore, it will suffice to merely tabulate the competitors and results.


2008 ◽  
Vol 26 ◽  
Author(s):  
Bror Jonsson ◽  
Nina Jonsson

<!--[if gte mso 9]><xml> <w:WordDocument> <w:View>Normal</w:View> <w:Zoom>0</w:Zoom> <w:HyphenationZone>21</w:HyphenationZone> <w:PunctuationKerning /> <w:ValidateAgainstSchemas /> <w:SaveIfXMLInvalid>false</w:SaveIfXMLInvalid> <w:IgnoreMixedContent>false</w:IgnoreMixedContent> <w:AlwaysShowPlaceholderText>false</w:AlwaysShowPlaceholderText> <w:Compatibility> <w:BreakWrappedTables /> <w:SnapToGridInCell /> <w:WrapTextWithPunct /> <w:UseAsianBreakRules /> <w:DontGrowAutofit /> </w:Compatibility> <w:BrowserLevel>MicrosoftInternetExplorer4</w:BrowserLevel> </w:WordDocument> </xml><![endif]--><!--[if gte mso 9]><xml> <w:LatentStyles DefLockedState="false" LatentStyleCount="156"> </w:LatentStyles> </xml><![endif]--><!--[if !mso]><object classid="clsid:38481807-CA0E-42D2-BF39-B33AF135CC4D" id=ieooui></object> <mce:style><! st1\:*{behavior:url(#ieooui) } --> <!--[endif] --> <!-- /* Style Definitions */ p.MsoNormal, li.MsoNormal, div.MsoNormal {mso-style-parent:""; margin:0cm; margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Times New Roman"; mso-fareast-font-family:"Times New Roman";} @page Section1 {size:612.0pt 792.0pt; margin:70.85pt 70.85pt 70.85pt 70.85pt; mso-header-margin:35.4pt; mso-footer-margin:35.4pt; mso-paper-source:0;} div.Section1 {page:Section1;} --> <!--[if gte mso 10]> <mce:style><! /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Vanlig tabell"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} --> <!--[endif] --><span style="font-size: small;"><span style="font-family: Times New Roman;"><span style="font-size: 10pt; font-family: Arial;" lang="EN-GB"><span style="font-family: TimesNewRomanPSMT; mso-ansi-language: EN-GB; mso-bidi-font-family: TimesNewRomanPSMT;">Two individuals of thinlip grey mullet </span><span style="font-family: TimesNewRomanPS-ItalicMT; mso-ansi-language: EN-GB; mso-bidi-font-style: italic; mso-bidi-font-family: TimesNewRomanPS-ItalicMT;"><em>Liza ramada </em></span><span style="font-family: TimesNewRomanPSMT; mso-ansi-language: EN-GB; mso-bidi-font-family: TimesNewRomanPSMT;">were collected in a southern Norwegian brook (58° 22’ N, 8° 37’ E) on 12th September 2007. The fish were 8.7 and 9.0 cm in total length, 6 and 7 g in total mass, and most probably in their first year of life. The nearest known spawning area of the species is south of the English Channel, meaning that they had probably moved at least 900 km across the North Sea during their first growth season. To our knowledge, this is the first published observation of the catadromous thinlip grey mullet from a Scandinavian freshwater course.</span></span></span></span>


Author(s):  
J. N. Carruthers

In July, 1924, 250 floating, and an equal number of bottom-trailing, bottles were put out at selected places in the western English Channel. Fifty of each type were put out at each of the two routine Stations E2 and E3, and the same number was “liberated” at each of three selected stretches along the steamship route from Southampton to St. Malo. Those surface bottles, which did not strand locally, travelled rapidly up Channel towards the North Sea and across it. Many bottles arrived in the Skager-Rack after performing their journey of some 700 miles at the rate of 6 miles a day and more. An adequate study of wind conditions, as recorded at several stations along the length of the Channel and at one station in the southern North Sea, revealed the fact that there was, for some 5½ months (counting from the time of liberation of the bottles), an almost uninterrupted predominance of south-westerly winds—as recorded at all stations considered. The whole area of the Channel was swept by south-westerly winds of average speed of some 9 miles a day for at least 5½ months subsequent to the time of putting out of the bottles. July, 1924, had (according to the Falmouth Observatory records) the largest proportion of westerly winds experienced for 54 years; 20 days of this month had winds with westerly components. The association of the unusually persistent westerly winds with the rapid travel of surface bottles towards and across the North Sea is interesting.


Author(s):  
C.P. Lynam ◽  
M.J. Attrill ◽  
M.D. Skogen

Oceanographically based mechanisms are shown to explain the spatial variation in the climatic relationship between the abundance of medusae (Aurelia aurita and Cyanea spp. of the class Scyphozoa), in the North Sea between 1971 and 1986 during June–August, and the winter (December–March) North Atlantic Oscillation Index (NAOI). A scyphomedusa population to the west of Denmark shows a strong inverse relationship between medusa abundance and fluctuations in the NAOI; the NAOI correlates strongly (P < 0.001) with both annual sea surface temperature (SST) at 6.5°E 56.5°N (1950–2008) and with winter precipitation on the Danish coast at Nordby (1900–2008) suggesting a direct link between the influence of climate and medusae abundance. In contrast, scyphomedusa abundance and distribution in the northern North Sea appears to be influenced by oceanic and mixed water inflow, which may overwhelm or mask any direct climatic influence on jellyfish abundance. Similarly, advection can also explain much of the interannual variability (1959–2000) in the abundance of other gelatinous zooplankton taxa (Cnidaria, Ctenophora and Siphonophora) in the northern North Sea as identified by the capture of gelatinous tissue and nematocysts (stinging cells) in Continuous Plankton Recorder samples. Jellyfish (Scyphozoa) in the southern North Sea may benefit from low temperature anomalies and the long-term effects of global warming might suppress Aurelia aurita and Cyanea spp. populations there. However, the biological response to temperature is complex and future research is required in this area.


1992 ◽  
Vol 12 (2-3) ◽  
pp. 213-233 ◽  
Author(s):  
G.K. Verboom ◽  
J.G. de Ronde ◽  
R.P. van Dijk

Sign in / Sign up

Export Citation Format

Share Document