A neutral line discharge theory of the aurora polaris

A theory of the aurora polaris is proposed which attempts to explain many features of the complicated morphology of auroral displays. One basis of the theory is the presence, during magnetic disturbance, of additional or enhanced magnetic fields due to electric currents within a distance of several earth radii from the earth’s centre. One such field (denoted by DCF) is due to electric currents flowing near the inner surface of the solar stream that then envelopes the earth. A hollow is carved in the stream by the geomagnetic field. The other field (denoted by DR) is that of an electric ring current, additional or enhanced, that flows westward round the earth. This is carried by the particles of the Van Allen belts. A third field (denoted by DP) is that of the disturbance currents that flow in the ionosphere, under the impulsion of electromotive forces generated mainly in polar regions. We consider it likely that during magnetic storms and auroral displays, neutral lines appear in the magnetic field near the earth. These will lie mainly on the dark side of the earth, in or near the equatorial plane, on the nearer side of the ring current. At times these lines may extend over more than 180° of longitude, so that a part of them may lie on the sunward side of the earth. These neutral lines are of two types, which we call O and X they appear together, in pairs. During disturbed conditions there may be more than one pair. Lines of force cross at points on X neutral lines, but they do not pass through O neutral lines. As Dungey has shown, charged particles will tend to be concentrated near X points (of which the X neutral lines are the locus). Charges drawn toward the neutral line will be discharged into the earth’s atmosphere along the lines of magnetic force. We suggest that the location, nature and motions of the auroral forms are determined by the position, form and motion of the X neutral lines, lying in or near the plane of the geomagnetic equator. It seems necessary to suppose, in addition, that an electric field arises sporadically along the X lines. When this is absent, the aurora appears as a quiet arc. The onset of the suggested electric field concentrates the charges more narrowly near the X line and near the lines of force that extend from it to the auroral zone. This produces extremely thin-rayed auroral arcs. The above concentration of electrons near an X neutral line produces a large flux of electrons, while the proton flux is diminished. A dynamical instability due to this flux difference (the space charge density is supposed to be very small) produces a slight separation of protons and electrons along and near the lines of force through the X line. Hence in the auroral ionosphere there is an associated electric field. This is usually directed towards the equator. It drives electric current, usually westward, along the auroral zones, and produces the strong magnetic disturbances (DP) there observed. Birkeland called these polar elementary storms. The rapid auroral changes are ascribed to instabilities of the magnetic field in the region near the X line or lines, to the rear of the earth, where the resultant magnetic field is weak. The ray structure in the auroral arc is ascribed to an instability of the thin sheet of electron flow. Cosmic rockets have shown that the magnetic field, up to and beyond ten earth radii, departs from the values corresponding to the internally produced main geomagnetic field. As yet these explorations do not seem to have disclosed the existence of reversals of the field in or near the magnetic equatorial plane. But on the basis of our auroral hypothesis, we predict with considerable confidence that such reversals will be found to occur, on the dark side of the earth, during great auroral displays. The theory here proposed is discussed in connexion with recent I. G. Y. and I. G. C. auroral, magnetic and other data.

2020 ◽  
Author(s):  
Jessy Matar ◽  
Benoit Hubert ◽  
Stan Cowley ◽  
Steve Milan ◽  
Zhonghua Yao ◽  
...  

<p> The coupling between the Earth’s magnetic field and the interplanetary magnetic field (IMF) transported by the solar wind results in a cycle of magnetic field lines opening and closing generally known as the Dungey substorm cycle, mostly governed by the process of magnetic reconnection. The geomagnetic field lines can therefore have either a closed or an open topology, i.e. lower latitude field lines are closed (map from southern ionosphere to the northern), while higher latitude field lines are open (map from one polar ionosphere into interplanetary space). Closed field lines can trap electrically charged particles that bounce between mirror points located in the North and South hemispheres while drifting in longitude around the Earth, forming the plasmasphere, the radiation belts and the ring current. The outer boundary of the plasmasphere is the plasmapause. Its location is mostly driven by the interplay of the corotation electric field of ionospheric origin, and the convection electric field that results from the interaction between the IMF and the geomagnetic field. At times of prolonged intense coupling between these fields, the response of the magnetosphere becomes global and a geomagnetic storm develops. The ring current created by the motion of the trapped energetic particles intensifies and then decays as the storm abates. This study aims to find a possible relationship between the evolution of the trapped population and the process of magnetic reconnection during storm times. The EUV instrument on board the NASA-IMAGE spacecraft observed the distribution of the trapped helium ions (He+) in the plasmasphere. We consider several cases of intense geomagnetic storms observed by the IMAGE satellite. We identify the plasmapause location (Lpp) during those cases. We find a strong correlation between the Dst index and Lpp. The ring current and the trapped particles are expected to vary during storms. We use the Tsyganenko magnetic field model to map the electric potential between the Heppner-Maynard boundary (HMB) in the ionosphere and the magnetosphere and estimate the voltage and electric field in the vicinity of the plasmapause. The ionospheric electric field is deduced from the ionospheric convection velocity measured by the SuperDARN (SD) radar network at high latitudes. The tangential electric field component of the moving plasmapause boundary is estimated from IMAGE-EUV observations of the plasmasphere and is compared with expectations based on the SD data. We combine measurements of the trapped population from IMAGE-EUV and IMAGE-FUV observations of the aurora to better understand and quantify the variability of the Earth's outer radiation belt during strong storms. The auroral precipitation at ionospheric latitude is studied using FUV imaging and compared to the He+ response during the storms.</p>


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
R. R. Ilma ◽  
M. C. Kelley ◽  
C. A. Gonzales

A correlation of the ionospheric electric field and the time derivative of the magnetic field was noticed over thirty years ago and has yet to be explained. Here we report on another set of examples during the superstorm of November 2004. The electric field in the equatorial ionosphere, measured with the Jicamarca incoherent scatter radar, exhibited a 3 mV/m electric field pulse that was not seen in the interplanetary medium. It was, however, accompanied by a correlation with the time derivative of the magnetic field measured at two points in Peru. Our inclination was to assume that the field was inductive. However, the time scale of the pulse was too short for the magnetic field to penetrate the crust of the Earth. This means that the area threaded by∂B/∂twas too small to create the observed electric field by induction. We suggest that the effect was caused by a modulation of the ring current location relative to the Earth due to the electric field. This electric field is required, as the magnetic field lines are considered frozen into the plasma in the magnetosphere. The closer location of the ring current to the Earth in turn increased the magnetic field at the surface.


2016 ◽  
Vol 34 (1) ◽  
pp. 55-65 ◽  
Author(s):  
A. D. M. Walker ◽  
G. J. Sofko

Abstract. When studying magnetospheric convection, it is often necessary to map the steady-state electric field, measured at some point on a magnetic field line, to a magnetically conjugate point in the other hemisphere, or the equatorial plane, or at the position of a satellite. Such mapping is relatively easy in a dipole field although the appropriate formulae are not easily accessible. They are derived and reviewed here with some examples. It is not possible to derive such formulae in more realistic geomagnetic field models. A new method is described in this paper for accurate mapping of electric fields along field lines, which can be used for any field model in which the magnetic field and its spatial derivatives can be computed. From the spatial derivatives of the magnetic field three first order differential equations are derived for the components of the normalized element of separation of two closely spaced field lines. These can be integrated along with the magnetic field tracing equations and Faraday's law used to obtain the electric field as a function of distance measured along the magnetic field line. The method is tested in a simple model consisting of a dipole field plus a magnetotail model. The method is shown to be accurate, convenient, and suitable for use with more realistic geomagnetic field models.


2002 ◽  
Vol 17 (12n13) ◽  
pp. 1645-1653
Author(s):  
MARINA GIBILISCO

In this work, I study the propagation of cosmic rays inside the magnetic field of the Earth, at distances d ≤ 500 Km from its surface; at these distances, the geomagnetic field deeply influences the diffusion motion of the particles. I compare the different effects of the interplanetary and of the geomagnetic fields, by also discussing their role inside the cosmic rays transport equation; finally, I present an analytical method to solve such an equation through a factorization technique.


2020 ◽  
Author(s):  
Svetlana Riabova ◽  
Alexander Spivak

<p>Temporal variations of the electric field in near-surface layer of the Earth are determined by many factors, among which strong disturbances of the magnetic field should be especially noted. Magnetic storms cause an increase in the ionospheric electric field, which leads to variations in the gradient of the electric field potential near the Earth's surface. We consider the effect of magnetic storms in variations in the electrical characteristics of the atmosphere at Geophysical observatory «Mikhnevo» of Sadovsky Institute of Geosphere Dynamics of Russian Academy of Sciences and at Center for geophysical monitoring of Moscow of Sadovsky Institute of Geosphere Dynamics of Russian Academy of Sciences. We used data from the continuous monitoring of three components of the magnetic field, vertical components of the atmospheric electric field and atmospheric current carried out in fair weather. Experimental data processing and analysis show that accompanying magnetic storms with geomagnetic K index more or equal 5 increased variations in the electric field and vertical atmospheric current are characterized by different morphological structures. It is currently difficult to interpret the data. Nevertheless, the research results can be of great help in the development and verification of theoretical and computational models for generating variations in the electric field as a result of strong geomagnetic disturbances.</p>


1958 ◽  
Vol 6 ◽  
pp. 295-311
Author(s):  
V. C. A. Ferraro

The evidence in favour of a corpuscular theory of magnetic storms is briefly reviewed and reasons given for believing that the stream must be neutral but ionized and carry no appreciable current. It is shown that under suitable conditions the stream is able to pass freely through a solar magnetic field; the stream may also be able to carry away with it a part of this field. However, because of geometrical broadening of the stream during its passage from the sun to the earth, the magnetic field imprisoned in the gas may be wellnigh unobservable near the earth.The nature, composition and dimensions of the stream near the earth are discussed and it is concluded that on arrival the stream will present very nearly a plane surface to the earth if undistorted by the magnetic field.Because of its large dimensions, the stream will behave as if it were perfectly conducting. During its advance in the earth's magnetic field the currents induced in the stream will therefore be practically confined to the surface. The action of the magnetic field on this current is to retard the surface of the stream which being highly distortible will become hollowed out. Since the stream surface is impervious to the interpenetration of the magnetic tubes of force, these will be compressed in the hollow space. The intensity of the magnetic field is thereby increased and this increase is identified with the beginning of the first phase of a magnetic storm. This increase will be sudden, as observed, owing to the rapid approach of the stream to the earth.The distortion of the stream surface is discussed and it is pointed out that two horns will develop on the surface, one north and the other south of the geomagnetic equator. Matter pouring through these two horns will find its way to the polar regions.The main phase of a magnetic storm seems most simply explained as due to a westward ring-current flowing round the earth in its equatorial plane. Under suitable conditions such a ring-current would be stable if once set up. The mode of formation of the ring is, however, largely conjectural. The possibility that the main phase may be of atmospheric origin is also briefly considered. It is shown that matter passing through the two horns to the polar regions could supply the energy necessary for the setting up of the field during the main phase. The magnetic evidence in favour of such a hypothesis, however, seems wanting.


2019 ◽  
Author(s):  
Yaşar Erdoğan ◽  
Mahir Murat Cengiz

ABSTRACTGeomagnetic field can be used by different magnetoreception mechanisms, for navigation and orientation by honeybees. The present study analyzed the effects of magnetic field on honeybees. This study was carried out in 2017 at the Bayburt University Beekeeping Application Station. In this study, the effect of Electro Magnetic field (EMF) and electric field (EF) on the time of finding the source of food of honeybees and the time of staying there were determined. The honeybees behaviors were analyzed in the presence of external magnetic fields generated by Helmholtz coils equipment. The Electro Magnetic field values of the coils were fixed to 0 μT (90mV/m), 50 μT (118 mV/m), 100 μT (151 mV/m), 150 μT (211 mV/m), 200 μT (264 mV/m). Petri dishes filled with sugar syrup were placed in the center of the coils. According to the study, honeybees visited at most U1 (mean =21.0±17.89 bees) and at least U5 (mean =10.82±11.77 bees). Honeybees waited for the longest time in U1 (mean =35.27±6.97 seconds) and at least in U5 (mean =12.28±5.58 seconds). According to the results obtained from this first study showed that honeybees are highly affected by electromagnetic radiation and electric field.SummaryHoneybees uses the magnetic field of the earth to to determine their direction. Nowadays, the rapid spread of electrical devices and mobile towers leads to an increase in man-made EMF. This causes honeybees to lose their orientation and thus lose their hives.


2021 ◽  
Author(s):  
Tatiana Výbošťoková ◽  
Zdeněk Němeček ◽  
Jana Šafránková

<p>Interaction of solar events propagating throughout the interplanetary space with the magnetic field of the Earth may result in disruption of the magnetosphere. Disruption of the magnetic field is followed by the formation of the time-varying electric field and thus electric current is induced in Earth-bound structures such as transmission networks, pipelines or railways. In that case, it is necessary to be able to predict a future state of the magnetosphere and magnetic field of the Earth. The most straightforward way would use geomagnetic indices. Several studies are investigating the relationship of the response of the magnetosphere to changes in the solar wind with motivation to give a more accurate prediction of geomagnetic indices during geomagnetic storms. To forecast these indices, different approaches have been attempted--from simple correlation studies to neural networks.</p><p>We study the effects of interplanetary shocks observed at L1 on the Earth's magnetosphere with a database of tens of shocks between 2009 and 2019. Driving the magnetosphere is described as integral of reconnection electric field for each shock. The response of the geomagnetic field is described with the SYM-H index. We created an algorithm in Python for prediction of the magnetosphere state based on the correlation of solar wind driving and magnetospheric response and found that typical time-lags range between tens of minutes to maximum 2 hours. The results are documented by a large statistical study.</p>


Author(s):  
William Lowrie

The Earth is surrounded by a magnetic field, which originates inside its molten core, and which for centuries has helped travellers to navigate safely across uncharted regions. The magnetic field protects life on the Earth by acting as a shield against harmful radiation from space, especially from the Sun. ‘The Earth’s magnetic field’ explains that the magnetic field at the Earth’s surface is dominantly that of an inclined dipole. The Sun’s deforming effect on the magnetic field outside the Earth is described, as are the magnetic fields of other planets. The magnetism of rocks forms the basis of palaeomagnetism, which explains how plate tectonics displaced the continents and produced oceanic magnetic anomalies whenever the geomagnetic field reversed polarity.


1. In the course of an investigation with a focus tube, in which the anti-cathode was a magnetic pole, some interesting observations were made with regard to the distribution of the fluorescence on the walls of the tube as the magnetic field varied. In order to explain the changes observed, the path of an electron in a radial field was investigated mathematically, and was found to lie on a right circular cone whose vertex coincides with the magnetic pole. If the surface of the cone is developed into a plane the trace of the path is a conic section, with the vertex as focus. This result continues to hold when an electric field, with its lines of force radiating from the same point, is superposed on the magnetic field. Although the actual distribution of electric intensity in a highly exhausted tube must differ widely from that here considered, the investigation sufficiently explains the facts observed. Theoretical . 2. The object is to find the path of a particle of mass m carrying a charge e in combined magnetic and electric fields, when the lines of force are radial and are such as might be due to a single pole of strength μ coincident with an electric charge k .


Sign in / Sign up

Export Citation Format

Share Document