A discussion on deformation of solids by the impact of liquids, and its relation to rain damage in aircraft and missiles, to blade erosion in steam turbines, and to cavitation erosion - Description of the damage in steam turbine blading due to erosion by water droplets

Efficient expansion of steam in turbines cools the vapour to the point where it becomes wet. As turbines become larger the higher blading speeds employed lead to erosion damage of the blading as a result of impact with accumulated water in the form of drops. The distribution of this damage in the turbine is discussed. The processes of drop formation, release and subsequent motion before impact with the moving blades are described and the application of this knowledge to practical design is illustrated by particular examples.

This paper describes the early stages of cavitation damage observed in cavitating venturi tunnels. The cavitating fluids were water and mercury, and a wide range of specimen materials were used. The damage was found to consist of single-event symmetical craters and irregular fatigue-type failures. The degree of damage was highly sensitive to minor flow perturbations, and this is discussed. The effect of stress level in the specimen before testing, and relations between cavitation resistance and the mechanical properties of the materials are considered.


The behaviour of established and potential turbine blade and erosion shield materials subject to impact erosion by water droplets of controlled size has been investigated over a range of impact velocities up to 1040 ft./s. Both the topographical form and the microstructural characteristics of damage have been studied, and correlated with the conditions of the test and the mechanical properties and phase constitution of the materials. It has been found that the rate of erosion, as measured by mass loss, changes during the course of a test. An initial incubation period is generally followed, successively, by periods of increasing, constant, and then decreasing rates of erosion, possibly culminating in a second steady, but lower, rate of erosion.


Author(s):  
Juri Bellucci ◽  
Filippo Rubechini ◽  
Andrea Arnone

This work aims at investigating the impact of partial admission on a steam turbine stage, focusing on the aerodynamic performance and the mechanical behavior. The partialized stage of a small steam turbine was chosen as test case. A block of nozzles was glued in a single “thick nozzle” in order to mimic the effect of a partial admission arc. Numerical analyses in full and in partial admission cases were carried out by means of three-dimensional, viscous, unsteady simulations. Several cases were tested by varying the admission rate, that is the length of the partial arc, and the number of active sectors of the wheel. The goal was to study the effect of partial admission conditions on the stage operation, and, in particular on the shape of stage performance curves as well as on the forces acting on bucket row. First of all, a comparison between the flow field of the full and the partial admission case is presented, in order to point out the main aspects related to the presence of a partial arc. Then, from an aerodynamic point of view, a detailed discussion of the modifications of unsteady rows interaction (potential, shock/wake), and how these ones propagate downstream, is provided. The attention is focused on the phenomena experienced in the filling/emptying region, which represent an important source of aerodynamic losses. The results try to deepen the understanding in the loss mechanisms involved in this type of stage. Finally, some mechanical aspects are addressed, and the effects on bucket loading and on aeromechanical forcing are investigated.


If a small cavity or bubble in a liquid is subject to impact or to shock, tiny Munroe jets may be formed on its concave surface. The velocity of these microjets may be high. A short film illustrating the formation of these small jets in cavities and in coalescing drops was shown.


Our object is to present a broad review of this subject as a branch of hydrodynamics, referring both to the well known ‘implosion’ mechanism first analysed by Lord Rayleigh and, more particularly, to the recently perceived possibility that effects of equally great violence, such as to damage solid boundaries, may arise through the impact of liquid jets formed by collapsing cavities. In §2 a few practical facts about cavitation damage are recalled by way of background, and then in §3 the significance of available theoretical and experimental information about cavity collapse is discussed. The main exposition of new ideas is in §4, which is a review of the factors contributing to shape changes and eventual jet formation by collapsing cavities. Finally, in §5, some new experimental observations on the unsymmetrical collapse of vapour-filled cavities are presented.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
J. M. Chen ◽  
D. X. Jiang ◽  
N. F. Wang ◽  
S. P. An

Rub caused by a shedding annular component is a severe fault happening in a steam turbine, which could result in a long-term wearing effect on the shaft. The shafting abrasion defects shortened the service life and damaged the unit. To identify the fault in time, the dynamic response of rub caused by a shedding annular component was studied as follows: (I) a rotor-bearing model was established based on the structural features of certain steam turbines; node-to-node contact constraint and penalty method were utilized to analyze the impact and friction; (II) dynamic response of the rotor-bearing system and the shedding component was simulated with the development of rub after the component was dropping; (III) fault features were extracted from the vibration near the bearing position by time-domain and frequency-domain analysis. The results indicate that the shedding annular component would not only rotate pivoting its axis but also revolve around the shaft after a period of time. Under the excitation of the contact force, the peak-peak vibration fluctuates greatly. The frequency spectrum contains two main components, that is, the working rotating frequency and revolving frequency. The same phenomenon was observed from the historical data in the field.


Author(s):  
Christoph Schindler ◽  
Gerta Zimmer

A load rejection disconnects the generator from the electrical grid. The resulting power excess accelerates the turbo set. Reacting to the load rejection, the turbine governor rapidly closes the steam admission valves. The remaining entrapped steam expands, thereby continuing to power the turbine. Thus the turbine speed rises till a dynamic equilibrium of accelerating and braking forces is reached. Thereafter the turbine speed decreases. If the maximally attained turbine speed remains below the trip threshold, immediate re-synchronization to the electrical grid is possible. Consequently, a forced outage of the steam turbine can be avoided and operational reliability is increased. Furthermore, functional safety requirements demand that the maximum turbine speed remains below test speed under all failure conditions. Accordingly, steam turbine design has to account for the impact of overspeed for a reliable and safe operation of the turbo set. In order to manage load rejection requirements for steam turbine operation, the design engineer applies standard rules and overspeed calculation methods. These rules limit standardized overspeed estimation by defining maximum steam volumes, valve closing times, and I&C reaction times, as well as type and number of non-return valves. A more thorough turbine overspeed investigation is necessary for several reasons, such as to evaluate this behavior under undesired failure conditions e.g. failure of non-return valves or blocking of control valves. A second justification for this investigation would be to predict changes resulting from turbine modifications — e.g. turbine upgrade or change at I&C systems. In this paper, basic and advanced overspeed calculation tools are illustrated and compared, with respect to required effort as well as accuracy of prediction. It is shown how system parameters which are most sensitive with respect to overspeed can be identified and their influence assessed. Thus, firstly it is already possible to identify and improve critical overspeed behavior during design. Secondly, the impact of particular failures can be accurately predicted, thus allowing for due implementation of appropriate counter measures. The methods, presented in this paper, were developed by the authors and their predecessors at SIEMENS AG for large steam turbo sets with a power range between 100 MW and 1500 MW.


Author(s):  
Gabriel Marinescu ◽  
Michael Sell ◽  
Andreas Ehrsam ◽  
Philipp B. Brunner

Steam turbine start-up has a significant impact on the cyclic fatigue life. Modern steam turbines are operated at high temperatures for optimal efficiency, which results in high temperature differences relative to the condition before start-up. To achieve the fastest possible start-up time without reducing the lifetime of the turbine components due to excessive thermal stress, the start-up procedure of cyclic turbines is optimized to follow the specific material low cycle fatigue limit. For such optimization and to ensure reliable operation, it is essential to fully understand the thermal behavior of the components during start-up. This is especially challenging in low flow conditions, i.e. during pre-warming and early loading phase. A two-dimensional numerical procedure is described for the assessment of the thermal regime during start-up. The calculation procedure includes the rotor, casings, valves and main pipes. The concept of the start-up calculation is to replace the convective effect of the steam in the turbine cavity by an equivalent fluid over-conductivity that gives the same thermal effect on metallic parts. This approach allows simulating accurately the effect of steam ingestion during pre-warming phase. The fluid equivalent over-conductivity is calibrated with experimental data. At the end of the paper the impact of ingested steam temperature and mass-flow on the rotor cyclic lifetime is demonstrated. This paper is a continuation of papers [1] and [2].


Sign in / Sign up

Export Citation Format

Share Document