Design Philosophy and Dynamic Calculation Method for Optimized Load Rejection Characteristics of Steam Turbines

Author(s):  
Christoph Schindler ◽  
Gerta Zimmer

A load rejection disconnects the generator from the electrical grid. The resulting power excess accelerates the turbo set. Reacting to the load rejection, the turbine governor rapidly closes the steam admission valves. The remaining entrapped steam expands, thereby continuing to power the turbine. Thus the turbine speed rises till a dynamic equilibrium of accelerating and braking forces is reached. Thereafter the turbine speed decreases. If the maximally attained turbine speed remains below the trip threshold, immediate re-synchronization to the electrical grid is possible. Consequently, a forced outage of the steam turbine can be avoided and operational reliability is increased. Furthermore, functional safety requirements demand that the maximum turbine speed remains below test speed under all failure conditions. Accordingly, steam turbine design has to account for the impact of overspeed for a reliable and safe operation of the turbo set. In order to manage load rejection requirements for steam turbine operation, the design engineer applies standard rules and overspeed calculation methods. These rules limit standardized overspeed estimation by defining maximum steam volumes, valve closing times, and I&C reaction times, as well as type and number of non-return valves. A more thorough turbine overspeed investigation is necessary for several reasons, such as to evaluate this behavior under undesired failure conditions e.g. failure of non-return valves or blocking of control valves. A second justification for this investigation would be to predict changes resulting from turbine modifications — e.g. turbine upgrade or change at I&C systems. In this paper, basic and advanced overspeed calculation tools are illustrated and compared, with respect to required effort as well as accuracy of prediction. It is shown how system parameters which are most sensitive with respect to overspeed can be identified and their influence assessed. Thus, firstly it is already possible to identify and improve critical overspeed behavior during design. Secondly, the impact of particular failures can be accurately predicted, thus allowing for due implementation of appropriate counter measures. The methods, presented in this paper, were developed by the authors and their predecessors at SIEMENS AG for large steam turbo sets with a power range between 100 MW and 1500 MW.

Author(s):  
Juri Bellucci ◽  
Filippo Rubechini ◽  
Andrea Arnone

This work aims at investigating the impact of partial admission on a steam turbine stage, focusing on the aerodynamic performance and the mechanical behavior. The partialized stage of a small steam turbine was chosen as test case. A block of nozzles was glued in a single “thick nozzle” in order to mimic the effect of a partial admission arc. Numerical analyses in full and in partial admission cases were carried out by means of three-dimensional, viscous, unsteady simulations. Several cases were tested by varying the admission rate, that is the length of the partial arc, and the number of active sectors of the wheel. The goal was to study the effect of partial admission conditions on the stage operation, and, in particular on the shape of stage performance curves as well as on the forces acting on bucket row. First of all, a comparison between the flow field of the full and the partial admission case is presented, in order to point out the main aspects related to the presence of a partial arc. Then, from an aerodynamic point of view, a detailed discussion of the modifications of unsteady rows interaction (potential, shock/wake), and how these ones propagate downstream, is provided. The attention is focused on the phenomena experienced in the filling/emptying region, which represent an important source of aerodynamic losses. The results try to deepen the understanding in the loss mechanisms involved in this type of stage. Finally, some mechanical aspects are addressed, and the effects on bucket loading and on aeromechanical forcing are investigated.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
J. M. Chen ◽  
D. X. Jiang ◽  
N. F. Wang ◽  
S. P. An

Rub caused by a shedding annular component is a severe fault happening in a steam turbine, which could result in a long-term wearing effect on the shaft. The shafting abrasion defects shortened the service life and damaged the unit. To identify the fault in time, the dynamic response of rub caused by a shedding annular component was studied as follows: (I) a rotor-bearing model was established based on the structural features of certain steam turbines; node-to-node contact constraint and penalty method were utilized to analyze the impact and friction; (II) dynamic response of the rotor-bearing system and the shedding component was simulated with the development of rub after the component was dropping; (III) fault features were extracted from the vibration near the bearing position by time-domain and frequency-domain analysis. The results indicate that the shedding annular component would not only rotate pivoting its axis but also revolve around the shaft after a period of time. Under the excitation of the contact force, the peak-peak vibration fluctuates greatly. The frequency spectrum contains two main components, that is, the working rotating frequency and revolving frequency. The same phenomenon was observed from the historical data in the field.


2015 ◽  
Vol 66 (2) ◽  
pp. 103-107
Author(s):  
Ladislav Laštovka ◽  
Pavla Hejtmánková

Abstract This paper presents control of a multiple stages steam turbine which is switched into the island operation. The frequency in an electrical grid is stated on nominal value which is in UCTE grid 50 Hz. When deviation of frequency is higher then 0.2 Hz, the switching of particular steam units into the island operation is only the chance how to maintain the supply of, at least, some small grids. The other possibility how to keep power units in operation, to be prepared for the next synchronization to the grid, is to switch them to operation status in which they supply only their self-consumption. This change of the operating state is the most dynamic load change for the control system of the unit. The multiple stages turbines are equipped with high pressure hydraulic valves for steam turbine governing. Influence of the intercept valve on steam turbine control during the switching process into the island operation is examined in Matlab Simuling software.


Author(s):  
Daniel Wanner ◽  
Isabel Neumann ◽  
Lars Drugge ◽  
Peter Cocron ◽  
Maxim Bierbach ◽  
...  

An experimental field study investigating the impact of single wheel hub motor failures on the dynamic behavior of a vehicle and the corresponding driver reaction is presented in this work. The experiment is performed at urban speeds on a closed off test track. The single wheel hub motor failure is emulated with an auxiliary brake system in a modified electric vehicle. Driver reaction times are derived from the measured data and discussed in their experimental context. The failure is rated and evaluated objectively based on the dynamic behavior of the vehicle. Findings indicate that driver reactions are more apparent for the accelerator pedal compared to the steering wheel response. The controllability evaluation of the vehicle behavior shows that no critical traffic situation occurs for the tested failure conditions. However, even small deviations of the vehicle can impair traffic safety, specifically for other traffic participants like bicyclist and pedestrians.


Author(s):  
Gabriel Marinescu ◽  
Michael Sell ◽  
Andreas Ehrsam ◽  
Philipp B. Brunner

Steam turbine start-up has a significant impact on the cyclic fatigue life. Modern steam turbines are operated at high temperatures for optimal efficiency, which results in high temperature differences relative to the condition before start-up. To achieve the fastest possible start-up time without reducing the lifetime of the turbine components due to excessive thermal stress, the start-up procedure of cyclic turbines is optimized to follow the specific material low cycle fatigue limit. For such optimization and to ensure reliable operation, it is essential to fully understand the thermal behavior of the components during start-up. This is especially challenging in low flow conditions, i.e. during pre-warming and early loading phase. A two-dimensional numerical procedure is described for the assessment of the thermal regime during start-up. The calculation procedure includes the rotor, casings, valves and main pipes. The concept of the start-up calculation is to replace the convective effect of the steam in the turbine cavity by an equivalent fluid over-conductivity that gives the same thermal effect on metallic parts. This approach allows simulating accurately the effect of steam ingestion during pre-warming phase. The fluid equivalent over-conductivity is calibrated with experimental data. At the end of the paper the impact of ingested steam temperature and mass-flow on the rotor cyclic lifetime is demonstrated. This paper is a continuation of papers [1] and [2].


2017 ◽  
Vol 1 ◽  
pp. ETJLRM
Author(s):  
Simon Hecker ◽  
Andreas Penkner ◽  
Jens Pfeiffer ◽  
Stefan Glos ◽  
Christian Musch

Abstract Today’s steam turbine power plants are designed for highest steam inlet temperatures up to 620°C to maximize thermal efficiency. This leads to elevated thermal stresses in rotors and casings of the turbines. Hence, temperature distributions of the components have to be predicted with highest accuracy at various load points in the design process to assure reliable operation and long life time. This paper describes the windage heating effect in full labyrinth seals used in steam turbines. An analytical approach is presented, based on CFD simulations, to predict the resulting steam temperatures. A broad application range from very low to highest Reynolds numbers representing different turbine operation conditions from partial to full load is addressed. The effect of varying Reynolds number on the flow friction behaviour is captured by using an analogy to the flow over a flat plate. Additionally, the impact of different labyrinth geometries on the friction coefficient is evaluated with the help of more than 100 CFD simulations. A meta-model is derived from the numerical results. Finally, the analytical windage heating model is validated against measurements. The presented approach is a fast and reliable method to find the best performing labyrinth geometries with lowest windage effects, i.e. lowest steam temperatures.


Efficient expansion of steam in turbines cools the vapour to the point where it becomes wet. As turbines become larger the higher blading speeds employed lead to erosion damage of the blading as a result of impact with accumulated water in the form of drops. The distribution of this damage in the turbine is discussed. The processes of drop formation, release and subsequent motion before impact with the moving blades are described and the application of this knowledge to practical design is illustrated by particular examples.


Author(s):  
Hiteshkumar Mistry ◽  
Manisekaran Santhanakrishnan ◽  
John Liu ◽  
Alexander Stein ◽  
Subhrajit Dey ◽  
...  

Modern steam turbines often utilize very long last stage buckets (LSB’s) in their low-pressure sections to improve efficiency. Some of these LSB’s can range in the order of 5 feet long. These long buckets (aka “blades”) are typically supported at their tip by a tip-shroud and near the mid span by a part span shroud or part span connector (PSC). The PSC is a structural element that connects all the rotor blades, generally at the mid span. It is primarily designed to address various structural issues, often with little attention to its aerodynamic effects. The objective of the current work is to quantify the impact of PSC on aerodynamic performance of the last stage of a LP steam turbine by using detailed CFD analyses. A commercial CFD solver, ANSYS CFX™, is used to solve the last stage domain by setting steam as the working fluid with linear variation of specific heat ratio with temperature. A tetrahedral grid with prismatic layers near the solid walls is generated using ANSYS WORKBENCH™. The results show a cylindrical PSC reduces the efficiency of the last stage by 0.32 pts, of which 0.20 pts is due to the fillet attaching the PSC to the blade. The results also show insignificant interaction of the PSC with the bucket tip aerodynamics. The work presents a detailed flow field analysis and shows the impact of PSC geometry on the aerodynamic performance of last stage of steam turbine. Present work is useful to turbine designer for trade-off studies of performance and reliability of LSB design with or without PSC.


Author(s):  
Damaso Checcacci ◽  
Lorenzo Cosi ◽  
Sanjay Kumar Sah

The evolution of the energy market is leading to a general increase in demand for cyclic operation and rapid startup capability for steam turbines utilized in power utility plants. As a consequence, turbine manufactures must optimize designs to minimize transient stress and make available to plant operators the necessary understanding of the impact of operating conditions on parts life. In addition, if continuous duty operation is not economical for an existing plant, operators considering switching to the cyclic mode need to take into account the cost associated with reduced maintenance intervals and parts replacement. This paper presents the methodologies applied to assess and optimize steam turbine rotor life. The discussion stems from the case analysis of a 60 MW steam turbine that was operated almost uninterrupted for 10 years in a combined cycle plant and was then expected to switch to cyclic operation with approx 250 startups/year. The effects of different rotor geometries on transient thermal stress/strain conditions are presented along with the consequences of startup sequence modifications for rotor life vs. on-line time. The discussion is supported by modeling details and results from transient thermomechanical FEM analyses. The possibility of a simplified approach in the form of approximate models for the analysis of such behavior on a project basis is also addressed.


Author(s):  
Gabriel Marinescu ◽  
Andreas Ehrsam

Steam turbine cool-down has a significant impact on the cyclic fatigue life. A lower initial metal temperature after standstill results in a higher temperature difference to be overcome during the next start-up. Generally, lower initial metal temperatures result in higher start-up stress. In order to optimize steam turbines for cyclic operation, it is essential to fully understand natural cooling, which is especially challenging for rotors. A two-dimensional numerical procedure is described for the assessment of the thermal regime during natural cooling including the rotors, casings, valves and main pipes. The concept of the cooling calculation is to replace the steam gross buoyancy during the gland steam ingestion phase by an equivalent fluid conductivity, that gives the same thermal effect on the metal parts. The fluid equivalent conductivity is calculated based on measurements. The approach is calibrated with experimental data. Finally, the highly sensitive nature of the cyclic lifetime to the predicted cooling evolution is demonstrated. This paper is complementary with the paper [1].


Sign in / Sign up

Export Citation Format

Share Document