efficient expansion
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 11)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Vol 22 (20) ◽  
pp. 10912
Author(s):  
Toshio Takahashi ◽  
Kazuto Fujishima ◽  
Mineko Kengaku

Intestinal epithelial cells (IECs) are crucial for the digestive process and nutrient absorption. The intestinal epithelium is composed of the different cell types of the small intestine (mainly, enterocytes, goblet cells, Paneth cells, enteroendocrine cells, and tuft cells). The small intestine is characterized by the presence of crypt-villus units that are in a state of homeostatic cell turnover. Organoid technology enables an efficient expansion of intestinal epithelial tissue in vitro. Thus, organoids hold great promise for use in medical research and in the development of new treatments. At present, the cholinergic system involved in IECs and intestinal stem cells (ISCs) are attracting a great deal of attention. Thus, understanding the biological processes triggered by epithelial cholinergic activation by acetylcholine (ACh), which is produced and released from neuronal and/or non-neuronal tissue, is of key importance. Cholinergic signaling via ACh receptors plays a pivotal role in IEC growth and differentiation. Here, we discuss current views on neuronal innervation and non-neuronal control of the small intestinal crypts and their impact on ISC proliferation, differentiation, and maintenance. Since technology using intestinal organoid culture systems is advancing, we also outline an organoid-based organ replacement approach for intestinal diseases.


Author(s):  
Kathleen Van Beylen ◽  
Ioannis Papantoniou ◽  
Jean-Marie Aerts

An increasing need toward a more efficient expansion of adherent progenitor cell types arises with the advancements of cell therapy. The use of a dynamic expansion instead of a static planar expansion could be one way to tackle the challenges of expanding adherent cells at a large scale. Microcarriers are often reported as a biomaterial for culturing cells in suspension. However, the type of microcarrier has an effect on the cell expansion. In order to find an efficient expansion process for a specific adherent progenitor cell type, it is important to investigate the effect of the type of microcarrier on the cell expansion. Human periosteum-derived progenitor cells are extensively used in skeletal tissue engineering for the regeneration of bone defects. Therefore, we evaluated the use of different microcarriers on human periosteum-derived progenitor cells. In order to assess the potency, identity and viability of these cells after being cultured in the spinner flasks, this study performed several in vitro and in vivo analyses. The novelty of this work lies in the combination of screening different microcarriers for human periosteum-derived progenitor cells with in vivo assessments of the cells’ potency using the microcarrier that was selected as the most promising one. The results showed that expanding human periosteum-derived progenitor cells in spinner flasks using xeno-free medium and Star-Plus microcarriers, does not affect the potency, identity or viability of the cells. The potency of the cells was assured with an in vivo evaluation, where bone formation was achieved. In summary, this expansion method has the potential to be used for large scale cell expansion with clinical relevance.


2020 ◽  
Vol 205 (9) ◽  
pp. 2391-2401
Author(s):  
Mélanie Chesneau ◽  
Hoa Le Mai ◽  
Richard Danger ◽  
Sabine Le Bot ◽  
Thi-Van-Ha Nguyen ◽  
...  

2020 ◽  
Vol 21 (17) ◽  
pp. 6284
Author(s):  
Mariana Cañas-Arboleda ◽  
Karl Beltrán ◽  
Carlos Medina ◽  
Bernardo Camacho ◽  
Gustavo Salguero

Manufacturing of mesenchymal stromal cell (MSC)-based therapies for regenerative medicine requires the use of suitable supply of growth factors that enhance proliferation, cell stability and potency during cell expansion. Human blood derivatives such as human platelet lysate (hPL) have emerged as a feasible alternative for cell growth supplement. Nevertheless, composition and functional characterization of hPL in the context of cell manufacturing is still under investigation, particularly regarding the content and function of pro-survival and pro-regenerative factors. We performed comparative analyses of hPL, human serum (hS) and fetal bovine serum (FBS) stability and potency to support Wharton’s jelly (WJ) MSC production. We demonstrated that hPL displayed low inter-batch variation and unique secretome profile that was not present in hS and FBS. Importantly, hPL-derived factors including PDGF family, EGF, TGF-alpha, angiogenin and RANTES were actively taken up by WJ-MSC to support efficient expansion. Moreover, hPL but not hS or FBS induced secretion of osteoprotegerin, HGF, IL-6 and GRO-alpha by WJ-MSC during the expansion phase. Thus, hPL is a suitable source of factors supporting viability, stability and potency of WJ-MSC and therefore constitutes an essential raw material that in combination with WJ-MSC introduces a great opportunity for the generation of potent regenerative medicine products.


Forests ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 458
Author(s):  
Alexandru Amarioarei ◽  
Mihaela Paun ◽  
Bogdan Strimbu

The parameters of nonlinear forest models are commonly estimated with heuristic techniques, which can supply erroneous values. The use of heuristic algorithms is partially rooted in the avoidance of transformation of the dependent variable, which introduces bias when back-transformed to original units. Efforts were placed in computing the unbiased estimates for some of the power, trigonometric, and hyperbolic functions since only few transformations of the predicted variable have the corrections for bias estimated. The approach that supplies unbiased results when the dependent variable is transformed without heuristic algorithms, but based on a Taylor series expansion requires implementation details. Therefore, the objective of our study is to investigate the efficient expansion of the Taylor series that should be included in applications, such that numerical bias is not present. We found that five functions require more than five terms, whereas the arcsine, arccosine, and arctangent did not. Furthermore, the Taylor series expansion depends on the variance. We illustrated the results on two forest modeling problems, one at the stand level, namely site productivity, and one at individual tree level, namely taper. The models that are presented in the paper are unbiased, more parsimonious, and they have a RMSE comparable with existing less parsimonious models.


2020 ◽  
Vol 74 (1) ◽  
pp. 1-17
Author(s):  
Jakov Nisavic ◽  
Nenad Milic ◽  
Andrea Radalj

Background. Coronaviruses (CoVs) have been recognized in veterinary virology for a long time and comprise a large group of RNA viruses responsible for enteric, respiratory, hepatic, and neurologic diseases in a variety of animal species and humans. These viruses are very adaptable considering their highly error-prone replication process and recombination ability, resulting in remarkable mutability and efficient expansion of their host range and tissue tropism. Scope and Approach. In the recent past, after the outbreaks caused by SARS-CoV in 2002 and MERS-CoV in 2012, CoVs became a research focus in the scientific community. Moreover, the ongoing SARS-CoV-2 pandemic raised more questions concerning the threats posed by these viruses. Several significant examples of coronaviruses jumping the species barrier and changing their tropism have been reported in the past, and novel viruses of both animals and humans have appeared as a consequence. This paper reviews some of the examples of CoV mutability and the most notable animal coronaviruses of veterinary relevance. Key Findings and Conclusions. There is still no proof that the novel virus SARS-CoV-2 can be transmitted to humans from domestic animals, and its recent cross-species jump is currently being intensively researched. Intensified and diverse human activities that lead to the disruption of ecosystems contribute to the increased risk of contact with animals that might represent virus reservoirs. The need for constant surveillance of CoVs and expanded studies of their virological traits, mutation mechanisms, diversity, prophylactic and therapeutic measures highlight the key role of both veterinarians and medical doctors in order to preserve the health of the human population.


Sign in / Sign up

Export Citation Format

Share Document