Towards a theory of irregular variations in the length of the day and core-mantle coupling

Determinations of fluctuations in the length of the day reveal changes due to the transfer of angular momentum between the Earth’s ‘solid’ mantle and the overlying atmosphere on time scales upwards of a few weeks, as well as the slower but more pronounced ‘decade variations’ due largely (according to current ideas) to angular momentum transfer between the mantle and the Earth’s liquid core. Improvements in techniques for monitoring the Earth’s rotation, such as those afforded by recent advances in methods of ranging to artificial satellites and the Moon and of very long baseline interferometry, should therefore lead to results of interest to meteorologists concerned with planetary-scale motions in the atmosphere and to geophysicists con­cerned with the magnetohydrodynamics of the core and the origin of the main geo­magnetic field. The consideration of the stresses at the Earth’s surface and at the core­mantle interface that bring about angular momentum exchange between the solid and fluid parts of the Earth raises a number of basic hydrodynamical questions requiring further experimental and theoretical research. In the case of the core, quantitative difficulties encountered by the suggestion that the stresses are electromagnetic in origin led to the idea of topographic coupling associated with hypothetical undulations of the core-mantle interface.

Seismic data demonstrate that the density of the liquid core is some 8-10 % less than pure iron. Equations of state of Fe-Si, C, FeS 2 , FeS, KFeS 2 and FeO, over the pressure interval 133-364 GPa and a range of possible core temperatures (3500- 5000 K), can be used to place constraints on the cosmochemically plausible light element constituents of the core (Si, C, S, K and O ). The seismically derived density profile allows from 14 to 20 % Si (by mass) in the outer core. The inclusion of Si, or possibly G (up to 11 %), in the core is possible if the Earth accreted inhomogeneously within a region of the solar nebulae in which a C :0 (atomic) ratio of about 1 existed, compared with a G : O ratio of 0.6 for the present solar photosphere. In contrast, homogeneous accretion permits Si, but not C, to enter the core by means of reduction of silicates to metallic Fe-Si core material during the late stages of the accumulation of the Earth. The data from the equation of state for the iron sulphides allow up to 9-13 % S in the core. This composition would provide the entire Earth with a S:Si ratio in the range 0.14-0.3, comparable with meteoritic and cosmic abundances. Shock-wave data for KFeS 2 give little evidence for an electronic phase change from 4s to 3d orbitals, which has been suggested to occur in K, and allow the Earth to store a cosmic abundance of K in the metallic core.


1979 ◽  
Vol 82 ◽  
pp. 55-57
Author(s):  
L. V. Morrison

Observations of the Earth's rotation have shown irregular variations of rate which have characteristic times of decades. These have been attributed to transfer of angular momentum between core and mantle by some mechanism such as inertial coupling, viscous stress, electromagnetic coupling or stresses produced by topographic features on the core mantle boundary.


Variations in the distribution of mass within the atmosphere and changes in the pattern of winds, particularly the strength and location of the major mid-latitude jet-streams, produce fluctuations in all three components of the angular momentum of the atmosphere on timescales upwards of a few days. In a previous study (Hide et al . 1980) it has been shown that variations in the axial component of atmospheric angular momentum during the Special Observing Periods in 1979 of the First GARP Global Experiment (FGGE, where GARP is the Global Atmospheric Research Program) are well correlated with changes in length-of-day. This would be expected if the total angular momentum of the atmosphere and ‘solid’ Earth were conserved on short timescales (allowing for lunar and solar effects) but not if angular momentum transfer between the Earth’s liquid core and solid mantle, which is accepted to be substantial and even dominant on timescales upwards of several years, were significant on timescales of weeks or months. Fluctuations in the equatorial components of atmospheric angular momentum should contribute to the observed wobble of the instantaneous pole of the Earth’s rotation with respect to the Earth’s crust, but this has not been shown conclusively by previous studies. In this paper we re-examine some aspects of the underlying theory of non-rigid body rotational dynamics and angular momentum exchange between the atmosphere and solid Earth. Since only viscous or topographic coupling between the atmosphere and solid Earth can transfer angular momentum, no atmospheric flow that everywhere satisfied inviscid equations (including, but not solely, geostrophic flow) could affect the rotation of a spherical solid Earth. Currently available meteorological data are not adequate for evaluating the usual wobble excitation functions accurately, but we show that partial integration leads to an expression involving simpler functions ─ here called ‘equatorial angular momentum functions’ ─ which can be reliably evaluated from available meteorological data. The length-of-day problem is treated in terms of a similar ‘axial angular momentum function’ ; and ‘effective angular momentum functions’ are defined in order to allow for rotational and surface loading deformation of the Earth. Daily values of these atmospheric angular momentum functions have been calculated from the ‘initialized analysis global database’ of the European Centre for Medium-Range Weather Forecasts (ECMWF). They are presented for the period 1 January 1981─30 April 1982, along with the corresponding astronomically observed changes in length-of-day and polar motion, published by the Bureau International de l’Heure (BIH). Changes in length-of-day during this period can be accounted for almost entirely by angular momentum exchange between the atmosphere and solid Earth, and the existence of a persistent fluctuation in this exchange, with a timescale of about 7 weeks, is confirmed. We also demonstrate that meteorological phenomena provide an important contribution to the excitation of polar motion. Our work offers a theoretical basis for future routine determinations of atmospheric angular momentum fluctuations for the purposes of meteorological and geophysical research, including the assessment of the extent to which movements in the solid Earth associated with very large earthquakes contribute to the excitation of the Chandlerian wobble.


The most striking features of the general circulation of the Earth’s atmosphere are its average ‘super-rotation’ relative to the solid Earth at about 10 m s -1 , and the concentration of much of the motion in jet streams with speeds of about 30 m s -1 . Changes in the pattern of winds, and variations in the distribution of mass within the atmosphere produce fluctuations in the angular momentum associated with this ‘super-rotation’, namely, the axial component H 3 of the total angular momentum of the atmosphere H i ,i = 1,2,3, and also in the equatorial components H 1 and H 2 . Fluctuations in H 3 during the Special Observing Periods of the recent ‘First GARP Global Experiment’ (FGGE, where GARP is the Global Atmospheric Research Programme) later have been investigated. They are well correlated with short-term changes of up to about 10 -3 s in magnitude in the length of the day (allowing for lunar and solar tidal effects on the moment of inertia of the solid Earth), exhibiting pronounced contributions on timescales of about seven weeks and one year and they are consistent with the sum of H 3 and the axial component of the angular momentum of the Earth’s crust and mantle being conserved on short timescales, without requiring significant angular momentum transfer between the Earth’s liquid core and overlying solid mantle on such timescales. Fluctuations in H 1 and H 2 on timescales much less than the Chandlerian period (14 months) but rather more than a few days make a major contribution to the observed wobble of the instantaneous pole of the Earth’s rotation with respect to the Earth’s crust, which has a variable amplitude of several metres. A theoretical basis has now been established for future routine determinations of fluctuations in H i for the purposes of meteorological and geophysical research, including the assessment of the extent to which movements within the solid Earth associated with major earthquakes (magnitude much greater than 7.9) and motions in the liquid metallic core might occasionally contribute to the. excitation of the Chandlerian wobble. Venus’s atmosphere ‘super-rotates’ at an average speed of about ten times that of the underlying planet, which, owing to angular momentum exchange with the atmosphere, should (like the solid Earth) undergo detectable changes in rotation period. Each of the giant planets Jupiter and Saturn exhibits a sharply-bounded equatorial atmospheric jet stream moving at 100 m s -1 (Jupiter) or 400 m s -1 (Saturn) in a positive (i.e. eastward) direction relative to higher latitude parts of the atmosphere, the average rotation of which is close to that of the hydrogen-metallic fluid interior (as determined from radio-astronomical observations). The theoretical interpretation of these observations presents challenging problems in the dynamics of rotating fluids.


2020 ◽  
Author(s):  
Julia Pfeffer ◽  
Anny Cazenave ◽  
Mioara Mandea ◽  
Véronique Dehant ◽  
Anne Barnoud

<p><span id="divtagdefaultwrapper" dir="ltr"><span lang="en-US">Convective motions in the Earth’s liquid core are known to  generate temporal variations of the magnetic field and of the length of day. Mass redistribution associated with these motions and exchange of matter with the lower mantle at the core mantle boundary (CMB) may eventually also contribute to the temporal variations of the gravity field, possibly detectable in the data of the GRACE and GRACE Follow On missions. In a pioneering work, Mandea et al., 2012 detected compelling spatio-temporal correlations at interannual time scale between the gravity and magnetic fields measured respectively by the GRACE and CHAMP satellite missions. These correlations were later interpreted by these authors as the results of physico-chemical interactions between the core and the mantle at the CMB. While such mechanisms are plausible, their mere existence, order of magnitude and  time scales remain an open question. Here we present the </span><span lang="en-US"> GRACEFUL project, recently selected by the  "Synergy" programme of the </span><span lang="en-US">European Research Council</span><span lang="en-US">, which objective is to  explore in more detail the previously reported observations described above, in particular the interannual co-variations of the magnetic and gravity fields, as well as their link with deep Earth processes.  This presentation is focussed on the  gravity field component, in particular on the search for the deep Earth signal that we hope to be able to detect i</span><span lang="en-US">n the  GRACE/GRACE FO data,  </span><span lang="en-US">after removing all other contributions due to water mass redistributions  occuring in the surface fluid evelopes, as well as  unrelated solid Earth signals associated with the Glacial Isostatic Adjustment and large earthquakes.</span></span></p>


Author(s):  
H. Bondi ◽  
R. A. Lyttleton

In an earlier paper of the same general title (1) the possibility that the core of the Earth, in view of its supposed liquid nature, does not partake of the rigid-body motion of the outer shell was discussed with particular reference to the secular diminution of the angular velocity. In addition to this small rate of change of the magnitude of the angular velocity vector of the shell there occur changes in its direction consisting of the precession and nutation, but all the rates of change therein involved are small. The secular retardation takes place with extreme slowness, the nutations involve deviations of the axis with small angular amplitudes, while the precession, though of large angular amplitude, is of very long period compared with the rotation period of the Earth. Accordingly, it may be supposed that the effects of these various changes in the angular velocity can be considered separately in their relation to the motion within the core, and it is the object of this paper to give an account of our investigation into what may be termed for brevity the precession problem. It should perhaps be stated at the outset that the work does not constitute a solution of the problem, which our studies have led us to believe is one of the utmost mathematical difficulty presenting features of an exceptional character in hydro-dynamic theory. After first obtaining the equations of steady motion applicable to the interior, and those applicable to the boundary layer, the solution of the latter equations has been obtained; but in respect of the former equations we have been able to carry the question of the interior motion only as far as showing that no motion representable everywhere by analytic functions and consistent with the boundary conditions is possible. The investigation strongly suggests that no steady-state motion of a permanent character is possible for the interior, though the precise nature of the motion that actually occurs poses a problem of special interest from a hydrodynamic standpoint, but it is one to which we are not able to arrive at any definite answer at present. Without making any progress with the problem thus produced, the paper nevertheless makes clear the inherent difficulties of the problem and also serves to emphasize the inadequacy of any simplified mode of attack assuming classical fluid and resembling, for example, Poincaré's method for the nutation problem adopted by Lamb (3). Thus despite its incompleteness it seemed worth while to publish some account of such progress with these highly interesting questions as we have been able to make.


1990 ◽  
Vol 141 ◽  
pp. 161-162
Author(s):  
V. V. Bykova

The nutation of the Earth with slightly nonelliptical liquid core is investigated by the perturbation theory method. It is shown that first-order terms affect the core ellipticity and its triaxiality. The most sensitive nutation terms in the second approximation were found to be retrograde 18.6-year term and retrograde annual term. The observed nutation amplitude values can be satisfied by special core-mantle boundary form.


1991 ◽  
Vol 127 ◽  
pp. 101-107
Author(s):  
M. Feissel

AbstractThe celestial reference system and the terrestial reference system of the International Earth Rotation Service (IERS) are realized on the basis of observation programs in Very Long Baseline radio Interferometry and laser ranging to the Moon and artificial satellites. The celestial frame is materialized by the equatorial coordinates of radio sources observed in VLBI; the terrestrial frame is materialized by the cartesian coordinates of the terrestrial sites monitored by the three techniques. Series of the Earth Orientation Parameters are derived from the same observations. These series provide a permanent link between the celestial system and the terrestrial system at the level of 0.001”.The global adjustment in which the reference systems are defined and realized is described, and the metrological properties of the frames and of the derived EOP are evaluated.


Sign in / Sign up

Export Citation Format

Share Document