The recent secular variation and the motions at the core surface

The Earth’s magnetic field has been undergoing a remarkably systematic variation during the last 30 years. This variation can be described by a constant time derivative and a step-function second derivative. These parameters are smoothly distributed over the Earth’s surface. The step occurred in 1969 and caused the second derivative to change signs for all of the components at most of the magnetic observatories. Similar but less well documented behavior had been observed around 1900; it seemed to correlate with a jump in the acceleration of the Earth’s rotation. We have investigated the motions at the top of the Earth’s core that are responsible for the recent magnetic variations by inversion procedures. The motions responsible for the time derivative of the magnetic field can be reasonably well assessed and are dominated by a westward drift term of approximately 0.2°/year, although important poloidal motions are also inferred. The data for the jump in the second derivative are much noisier and the motion accelerations are not as well resolved. The poloidal acceleration terms are still fairly well resolved, but the toroidal motions, especially the zonal motions, are very poorly resolved. No firm conclusion about an acceleration of the westward drift can be given on the basis of this analysis. The inversions give evidence that the motions for the lower modes are a strongly decreasing function of their order.

2021 ◽  
Vol 11 (10) ◽  
pp. 4567
Author(s):  
Xiaoqing Zhang ◽  
Yaowu Wang

An effective method is proposed in this paper for calculating the transient magnetic field and induced voltage in the photovoltaic bracket system under lightning stroke. Considering the need for the lightning current responses on various branches of the photovoltaic bracket system, a brief outline is given to the equivalent circuit model of the photovoltaic bracket system. The analytic formulas of the transient magnetic field are derived from the vector potential for the tilted, vertical and horizontal branches in the photovoltaic bracket system. With a time–space discretization scheme put forward for theses formulas, the magnetic field distribution in an assigned spatial domain is determined on the basis of the lightning current responses. The magnetic linkage passing through a conductor loop is evaluated by the surface integral of the magnetic flux density and the induced voltage is obtained from the time derivative of the magnetic linkage. In order to check the validity of the proposed method, an experiment is made on a reduced-scale photovoltaic bracket system. Then, the proposed method is applied to an actual photovoltaic bracket system. The calculations are performed for the magnetic field distributions and induced voltages under positive and negative lightning strokes.


2021 ◽  
Vol 42 (3) ◽  
Author(s):  
Paula Possamai Sergipe ◽  
Yára Regina Marangoni ◽  
Roberto Paulo Zanon dos Santos ◽  
Denise Silva de Moura ◽  
Luigi Jovane

AbstractThe diurnal variation of the magnetic field cannot be predicted or modeled and for that reason, it is monitored during the magnetic surveys, usually by a stationary magnetometer. However, marine surveys have a practical issue with diurnal monitoring, owing to the distance between the survey, stationary magnetometers, and magnetic observatories. This work aims to verify the use of nearby magnetic observatories to estimate the diurnal variation correction in different marine surveys and evaluate its effectiveness. In this study, we selected surveys at the continental shelf near Santos city (Survey 1), continental slope next to the first survey location (Survey 2), continental shelf near Ubatuba city (Survey 3), and Mamanguá ria in the Paraty city (Survey 4), all southeast to the Brazilian coast. The crossing points were implemented to compare the magnetic field values at different times and days at the same measurement point, before and after the correction. Afterwards, we measure the Pearson’s Correlation of the raw data and the diurnal corrected data in all crossing points of each survey which showed an improvement after correction by the value approximating to 1, which indicates a very well correlation. The Ubatuba and Mamanguá surveys allowed comparing the observatory correction results with the base magnetometer results that were rather similar. Our analyses indicate a satisfactory diurnal correction using the observatory data and the crossing points approach, which can be used for every marine magnetometric survey worldwide placed near the coast (< 280 km) that do not have a stationary magnetometer available.


1999 ◽  
Vol 42 (2) ◽  
Author(s):  
A. De Santis ◽  
M. Chiappini ◽  
J. M. Torta ◽  
R. R. B. von Frese

The properties of the Earth's core magnetic field and its secular variation are poorly known for the Antarctic. The increasing availability of magnetic observations from airborne and satellite surveys, as well as the existence of several magnetic observatories and repeat stations in this region, offer the promise of greatly improving our understanding of the Antarctic core field. We investigate the possible development of a Laplacian reference model of the core field from these observations using spherical cap harmonic analysis. Possible uses and advantages of this approach relative to the implementations of the standard global reference field are also considered.


The westward drift of the non-dipole part of the earth’s magnetic field and of its secular variation is investigated for the period 1907-45 and the uncertainty of the results discussed. It is found that a real drift exists having an angular velocity which is independent of latitude. For the non-dipole field the rate of drift is 0.18 ± 0-015°/year, that for the secular variation is 0.32 ±0-067°/year. The results are confirmed by a study of harmonic analyses made between 1829 and 1945. The drift is explained as a consequence of the dynamo theory of the origin of the earth’s field. This theory required the outer part of the core to rotate less rapidly than the inner part. As a result of electromagnetic forces the solid mantle of the earth is coupled to the core as a whole, and the outer part of the core therefore travels westward relative to the mantle, carrying the minor features of the field with it.


2021 ◽  
Author(s):  
Jérémy Rekier ◽  
Santiago Triana ◽  
Véronique Dehant

&lt;p&gt;Magnetic fields inside planetary objects can influence their rotation. This is true, in particular, of terrestrial objects with a metallic liquid core and a self-sustained dynamo such as the Earth, Mercury, Ganymede, etc. and also, to a lesser extent, of objects that don&amp;#8217;t have a dynamo but are embedded in the magnetic field of their parent body like Jupiter&amp;#8217;s moon, Io.&lt;br&gt;In these objects, angular momentum is transfered through the electromagnetic torques at the Core-Mantle Boundary (CMB) [1]. In the Earth, these have the potential to produce a strong modulation in the length of day at the decadal and interannual timescales [2]. They also affect the periods and amplitudes of nutation [3] and polar motion [4].&amp;#160;&lt;br&gt;The intensity of these torques depends primarily on the value of the electric conductivity at the base of the mantle, a close study and detailed modelling of their role in planetary rotation can thus teach us a lot about the physical processes taking place near the CMB.&lt;/p&gt;&lt;p&gt;In the study of the Earth&amp;#8217;s length of day variations, the interplay between rotation and the internal magnetic field arrises from the excitation of torsional oscillations inside the Earth&amp;#8217;s core [5]. These oscillations are traditionally modelled based on a series of assumptions such as that of Quasi-Geostrophicity (QG) of the flow inside the core [6]. On the other hand, the effect of the magnetic field on nutations and polar motion is traditionally treated as an additional coupling at the CMB [1]. In such model, the core flow is assumed to have a uniform vorticity and its pattern is kept unaffected by the magnetic field.&amp;#160;&lt;/p&gt;&lt;p&gt;In the present work, we follow a different approach based on the study of magneto-inertial waves. When coupled to gravity through the effect of density stratification, these waves are known to play a crucial role in the oscillations of stars known as magneto-gravito-inertial modes [7]. The same kind of coupling inside the Earth&amp;#8217;s core gives rise to the so-called MAC waves which are directly and conceptually related to the aforementioned torsional oscillations [8].&amp;#160;&lt;/p&gt;&lt;p&gt;We present our preliminary results on the computation of magneto-inertial waves in a freely rotating planetary model with a partially conducting mantle. We show how these waves can alter the frequencies of the free rotational modes identified as the Free Core Nutation (FCN) and Chandler Wobble (CW). We analyse how these results compare to those based on the QG hypothesis and how these are modified when viscosity and density stratification are taken into account.&amp;#160;&lt;/p&gt;&lt;p&gt;[1] Dehant, V. et al. Geodesy and Geodynamics 8, 389&amp;#8211;395 (2017). doi:10.1016/j.geog.2017.04.005&lt;br&gt;[2] Holme, R. et al. Nature 499, 202&amp;#8211;204 (2013). doi:10.1038/nature12282&lt;br&gt;[3] Dumberry, M. et al. Geophys. J. Int. 191, 530&amp;#8211;544 (2012). doi:10.1111/j.1365-246X.2012.05625.x&lt;br&gt;[4] Kuang, W. et al. Geod. Geodyn. 10, 356&amp;#8211;362 (2019). doi:10.1016/j.geog.2019.06.003&lt;br&gt;[5] Jault, D. et al. Nature 333, 353&amp;#8211;356 (1988). doi:10.1038/333353a0&lt;br&gt;[6] Gerick, F. et al. Geophys. Res. Lett. (2020). doi:10.1029/2020gl090803&lt;br&gt;[7] Mathis, S. et al. EAS Publications Series 62 323-362 (2013). doi: 10.1051/eas/1362010&lt;br&gt;[8] Buffett, B. et al. Geophys. J. Int. 204, 1789&amp;#8211;1800 (2016). doi:10.1093/gji/ggv552&lt;/p&gt;


2016 ◽  
Vol 2016 (DPC) ◽  
pp. 002111-002130 ◽  
Author(s):  
Bruce C Kim ◽  
Saikat Mondal

This paper describes the design of a Through Silicon Via based high density 3D inductors for Internet of Things (IoT) applications. We present some possible challenges for TSV-based inductors in IoT applications. The current trend towards Internet of Things (IOT), System in Package (SiP) and Package-on-Package (PoP) requires meeting the power requirements of heterogeneous technologies while maintaining minimum package size. 3-D chip stacking has emerged as one of the potential solutions due to its high density integration in a 3D power electronics packaging regime. As an integral part of many power electronics applications, TSV-based inductors are becoming a popular choice because of their high inductance density due to the reduced on-chip footprint compared to conventional planar inductors. Depending on the requirement, values of these inductors could range from a few nanohenries to hundreds of microhenries. Small inductors with a high quality factor are mainly used for RF filter applications, whereas large inductors are used in power electronics packaging. For high inductance it is necessary to use ferromagnetic materials. A conventional ferromagnetic metal core like nickel could offer high permeability, which can help to boost the inductance. However, the magnetic field lines within a metal core induce eddy current which can have multiple adverse effect in power electronics packaging. For example, it has long been known that the current can increase the resistance in transformer winding [1]. Eddy current can also heat up the core of the inductor which makes the heat sink process in 3D packaging even more challenging. One way to decrease the eddy current, is to pattern and laminate the core block into multiple segments orthogonal to the direction of the magnetic field line [2]. Another method is to increase the resistivity of the core material so that the eddy current is limited to a very small magnitude [3].


The magnetic field generated in the core of the Earth is often represented by spherical harmonics of the magnetic potential. It has been found from looking at the equations of spherical harmonics, and from studying the values of the spherical harmonic coefficients derived from data from Magsat, that this is an unsatisfactory way of representing the core field. Harmonics of high degree are characterized by generally shorter wavelength expressions on the surface of the Earth, but also contain very long wavelength features as well. Thus if it is thought that the higher degree harmonics are produced by magnetizations within the crust of the Earth, these magnetizations have to be capable of producing very long wavelength signals. Since it is impossible to produce very long wavelength signals of sufficient amplitude by using crustal magnetizations of reasonable intensity, the separation of core and crustal sources by using spherical harmonics is not ideal. We suggest that a better way is to use radial off-centre dipoles located within the core of the Earth. These have several advantages. Firstly, they can be thought of as modelling real physical current systems within the core of the Earth. Secondly, it can be shown that off-centred dipoles, if located deep within the core, are more effective at removing long wavelength signals of potential or field than can be achieved by using spherical harmonics. The disadvantage is that it is much more difficult to compute the positions and strengths of the off-centred dipole fields, and much less easy to manipulate their effects (such as upward and downward continuation). But we believe, along with Cox and Alldredge & Hurwitz, that the understanding that we might obtain of the Earth’s magnetic field by using physically reasonable models rather than mathematically convenient models is very important. We discuss some of the radial dipole models that have been proposed for the nondipole portion of the Earth’s field to arrive at a model that agrees with observations of secular variation and excursions.


Sign in / Sign up

Export Citation Format

Share Document