10 Be and δ 2 H in polar ice cores as a probe of the solar variability’s influence on climate

By using the technique of accelerator mass spectrometry, it is now possible to measure detailed profiles of cosmogenic (cosmic ray produced) 10 Be in polar ice cores. Recent work has demonstrated that these profiles contain information on solar activity, via its influence on the intensity of galactic cosmic rays arriving in the Earth’s atmosphere. It has been known for some time that, as a result of temperature-dependent fractionation effects, the stable isotope profiles δ 2 O and δ 2 H in polar ice cores contain palaeoclimate information. Thus by comparing the 10 Be and stable isotope profiles in the same ice core, one can test the influence of solar variability on climate, and this independent of possible uncertainties in the absolute chronology of the records. We present here the results of such a comparison for two Antarctic ice cores; one from the South Pole, covering the past ca . 1000 years, and one from Dome C, covering the past ca . 3000 years.

1985 ◽  
Vol 7 ◽  
pp. 125-129 ◽  
Author(s):  
C.U. Hammer

Polar ice cores offer datable past snow deposits in the form of annual ice layers, which reflect the past atmospheric composition. Trace substances in the cores are related to the past mid-tropospheric impurity load, this being due to the vast extent of the polar ice sheets (or ice caps), their surface elevations and remoteness from most aerosol sources. Volcanic eruptions add to the rather low background impurity load via their eruptive products. This paper concentrates on the widespread influence on atmospheric impurity loads caused by the acid gas products from volcanic eruptions. In particular the following subjects are discussed: acid volcanic signals in ice cores, latitude of eruptions as derived by ice-core analysis, inter-hemispheric dating of the two polar ice sheets by equatorial eruptions, volcanic deposits in ice cores during the last glacial period and climatic implications.


In a very short period of time, 10 Be data have significantly improved our knowledge in various fields of Earth and planetary sciences. Examples are: (a) solar modulation of isotope production, revealed in 10 Be ice-core profiles; (b)geomagnetic m odulation of isotope production, revealed in 10 Be ice-core (from the past 10 ka) and ocean-sediment profiles (geomagnetic reversals); (c) climatic effects reflected in 10 Be profiles in loess and polar ice cores ( 10 Be behaviour in atmosphere); (d) comparison of 10 Be and 14 C variations (tree rings) from carbon-cycle models and inform ation on ocean circulation history from 14 C m easurements on benthic and planktonic Foram inifera in ocean sediments. An overview on work in collaboration with the Zurich AMS facility (with Professor W. Wolfli) is given.


2002 ◽  
Vol 35 ◽  
pp. 202-208 ◽  
Author(s):  
Bernard Stauffer ◽  
Jacqueline Flückiger ◽  
Eric Monnin ◽  
Jakob Schwander ◽  
Jean-Marc Barnola ◽  
...  

AbstractAnalyses of air extracted from polar ice cores are the most straightforward method of reconstructing the atmospheric concentrations of greenhouse gases and their variations for past climatic epochs. These measurements show that the concentration of the three most important greenhouse gases (other than water vapour) CO2, CH4 and N2O have steadily increased during the past 250 years due to anthropogenic activities (Prather and others, 2001; Prentice and others, 2001). Ice-core results also provided the first evidence of a substantial increase in the concentration of the three gases during the transition from the last glacial epoch to the Holocene (Raynaud and others, 1993). However, results from different cores are not always in agreement concerning details and small, short-term variations. the composition of the air enclosed in bubbles can be slightly changed by fractionation during the enclosure process, by chemical reactions and/or biological activity in the ice and by fractionation during the air extraction. We compile here several records with short-term variations or anomalies and discuss possible causes, taking into account improved analytical techniques and new results.


1985 ◽  
Vol 7 ◽  
pp. 125-129 ◽  
Author(s):  
C.U. Hammer

Polar ice cores offer datable past snow deposits in the form of annual ice layers, which reflect the past atmospheric composition. Trace substances in the cores are related to the past mid-tropospheric impurity load, this being due to the vast extent of the polar ice sheets (or ice caps), their surface elevations and remoteness from most aerosol sources. Volcanic eruptions add to the rather low background impurity load via their eruptive products. This paper concentrates on the widespread influence on atmospheric impurity loads caused by the acid gas products from volcanic eruptions. In particular the following subjects are discussed: acid volcanic signals in ice cores, latitude of eruptions as derived by ice-core analysis, inter-hemispheric dating of the two polar ice sheets by equatorial eruptions, volcanic deposits in ice cores during the last glacial period and climatic implications.


1988 ◽  
Vol 10 ◽  
pp. 151-156 ◽  
Author(s):  
U. Siegenthaler ◽  
H. Friedli ◽  
H. Loetscher ◽  
E. Moor ◽  
A. Neftel ◽  
...  

Analyses of air trapped in an ice core from the South Pole indicate that the CO2 concentration may have increased by about 10 ppm and that the 13C/12C ratio decreased slightly in the thirteenth century. These changes, if really of atmospheric origin, must be due to a significant input into the atmosphere of CO2, either of biogenic or of oceanic origin. 18O/16O ratios in CO2 from different ice cores are much lower than those which have been observed in atmospheric carbon dioxide. A possible explanation is that the CO2 has equilibrated isotopically with the ice. We have calculated equilibrium isotope-fractionation factors between ice and carbon dioxide and found that the observed 18O/16O ratios of CO2 are indeed near isotopic equilibrium with the ice. This indicates that an exchange of oxygen atoms probably occurs between ice and included CO2.


1988 ◽  
Vol 10 ◽  
pp. 151-156 ◽  
Author(s):  
U. Siegenthaler ◽  
H. Friedli ◽  
H. Loetscher ◽  
E. Moor ◽  
A. Neftel ◽  
...  

Analyses of air trapped in an ice core from the South Pole indicate that the CO2concentration may have increased by about 10 ppm and that the13C/12C ratio decreased slightly in the thirteenth century. These changes, if really of atmospheric origin, must be due to a significant input into the atmosphere of CO2, either of biogenic or of oceanic origin.18O/16O ratios in CO2from different ice cores are much lower than those which have been observed in atmospheric carbon dioxide. A possible explanation is that the CO2has equilibrated isotopically with the ice. We have calculated equilibrium isotope-fractionation factors between ice and carbon dioxide and found that the observed18O/16O ratios of CO2are indeed near isotopic equilibrium with the ice. This indicates that an exchange of oxygen atoms probably occurs between ice and included CO2.


2020 ◽  
Author(s):  
Jochen Schmitt ◽  
James Lee ◽  
Jon Edwards ◽  
Edward Brook ◽  
Thomas Blunier ◽  
...  

<p>Air inclusions trapped in polar ice provide unique records of the past atmospheric composition ranging from key greenhouse gases to short-lived trace gases like ethane and propane. Provided the analyzed species concentrations and their isotopic fingerprints accurately reflect past atmospheric composition, valuable constraints can be put onto biogeochemical cycles. However, it is already known that not all drill sites or specific time intervals are equally suitable to derive artefact-free gas records; e.g., CO<sub>2</sub> data from Greenland ice is overprinted by CO<sub>2</sub> ‘in situ’ production due to impurities in the ice, and only the cleaner Antarctic ice allows to reconstruct past atmospheric CO<sub>2</sub>.</p><p>Until recently, CH<sub>4</sub> artefacts in polar ice were only detected on melt affected samples or for short spikes related to exceptional impurity deposition events (Rhodes et al 2013). However, careful comparison of CH<sub>4</sub> records obtained using different extraction methods revealed disagreements among Greenland CH<sub>4</sub> records and initiated targeted experiments.</p><p>Here, we report experimental findings of CH<sub>4</sub> artefacts occurring in dust-rich sections of Greenland ice cores. The artefact production happens during the melt extraction step (‘in extractu’) of the classic wet extraction technique and typically reaches 20 ppb in dusty stadial ice which causes erroneous reconstructions of the interhemispheric CH<sub>4</sub> difference and strongly affects the hydrogen isotopic signature of CH<sub>4</sub> (Lee et al. 2020). The measured CH4 excess is proportional to the amount of mineral dust in the ice. Knowing the empirical relation between produced CH4 and the dust concentration of a sample allows a first-order correction of existing CH4 data sets and to revise previous interpretations.</p><p>To shed light on the underlying mechanism, we analyzed samples for other short-chain alkanes ethane (C<sub>2</sub>H<sub>6</sub>) and propane (C<sub>3</sub>H<sub>8</sub>). The production of CH<sub>4</sub> was always tightly accompanied with C<sub>2</sub>H<sub>6</sub> and C<sub>3</sub>H<sub>8</sub> production at amounts exceeding the past atmospheric background levels derived from low-dust samples. Independent of the produced amounts, CH<sub>4</sub>, C<sub>2</sub>H<sub>6</sub>, and C<sub>3</sub>H<sub>8</sub> were produced in molar ratios of roughly 16:2:1, respectively. The simultaneous production at these ratios does not point to an anaerobic methanogenic origin which typically exhibits methane-to-ethane ratios of >>100. Such alkane patterns are indicative of abiotic degradation of organic matter as found in sediments.</p><p>We found this specific alkane pattern not only for dust-rich samples but also for samples that were affected by surface melting from the last interglacial (NEEM ice core) with low dust concentrations. This implies that the necessary precursor is an impurity also present in low-dust ice and the step leading to the production of the alkanes could then be activated when a sufficient boundary condition is met for the production, e.g. by melt/refreeze of surface snow.</p>


Radiocarbon ◽  
1995 ◽  
Vol 37 (2) ◽  
pp. 637-641 ◽  
Author(s):  
A T. Wilson

I describe here the use of the accelerator mass spectrometer (AMS) sublimation technique to 14C-date polar ice cores. An unexpected result of this work has been to extend the understanding of how polar ice sheets entrap and record the past composition of the Earth's atmosphere. This work has led to the discovery of a new phenomenon in which CO2 and other greenhouse gases can be entrapped in cold (never melted) polar ice sheets.


2021 ◽  
Vol 7 (22) ◽  
pp. eabc1379
Author(s):  
Pengfei Liu ◽  
Jed O. Kaplan ◽  
Loretta J. Mickley ◽  
Yang Li ◽  
Nathan J. Chellman ◽  
...  

Fire plays a pivotal role in shaping terrestrial ecosystems and the chemical composition of the atmosphere and thus influences Earth’s climate. The trend and magnitude of fire activity over the past few centuries are controversial, which hinders understanding of preindustrial to present-day aerosol radiative forcing. Here, we present evidence from records of 14 Antarctic ice cores and 1 central Andean ice core, suggesting that historical fire activity in the Southern Hemisphere (SH) exceeded present-day levels. To understand this observation, we use a global fire model to show that overall SH fire emissions could have declined by 30% over the 20th century, possibly because of the rapid expansion of land use for agriculture and animal production in middle to high latitudes. Radiative forcing calculations suggest that the decreasing trend in SH fire emissions over the past century largely compensates for the cooling effect of increasing aerosols from fossil fuel and biofuel sources.


2021 ◽  
Author(s):  
Kseniia Golubenko ◽  
Eugene Rozanov ◽  
Genady Kovaltsov ◽  
Ari-Pekka Leppänen ◽  
Ilya Usoskin

<p>We present the first results of modelling of the short-living cosmogenic isotope <sup>7</sup>Be production, deposition, and transport using the chemistry-climate model SOCOLv<sub>3.0</sub> aimed to study solar-terrestrial interactions and climate changes. We implemented an interactive deposition scheme,  based on gas tracers with and without nudging to the known meteorological fields. Production of <sup>7</sup>Be was modelled using the 3D time-dependent Cosmic Ray induced Atmospheric Cascade (CRAC) model. The simulations were compared with the real concentrations (activity) and depositions measurements of <sup>7</sup>Be in the air and water at Finnish stations. We have successfully reproduced and estimated the variability of the cosmogenic isotope <sup>7</sup>Be produced by the galactic cosmic rays (GCR) on time scales longer than about a month, for the period of 2002–2008. The agreement between the modelled and measured data is very good (within 12%) providing a solid validation for the ability of the SOCOL CCM to reliably model production, transport, and deposition of cosmogenic isotopes, which is needed for precise studies of cosmic-ray variability in the past. </p>


Sign in / Sign up

Export Citation Format

Share Document